

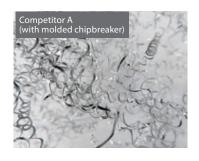
For Small Parts Machining

Aluminum Alloy Machining Solutions

Solutions to Improve Productivity in Aluminum Alloy Machining

For Small Parts Machining

Aluminum Alloy Machining Solutions


PCD Chipbreaker for Finishing, Multifunctional PCD Chipbreaker for Grooving and Traversing with Good Chip Control, and Y-axis Toolholders for Excellent Aluminum Machining Results

Superior Chip Control Improves Machining Quality and Productivity

Molded PCD **APD Chipbreaker**

APD Chipbreaker shows good chip control from small to large D.O.C.

Beautiful Surface Finish

High Performance Across a Variety of Machining Applications

Molded PCD **AGT Chipbreaker** for KTKF holders

Unique chipbreaker design provides excellent chip control

Improved Chip Control

Multifunctional PCD Chipbreaker for Grooving and Traversing

New Toolholders Maintain Stable Machining

Improved Chip Control Y-axis Toolholder

Excellent Chip Evacuation with Y-axis Tuning Prevents Chip Entanglement

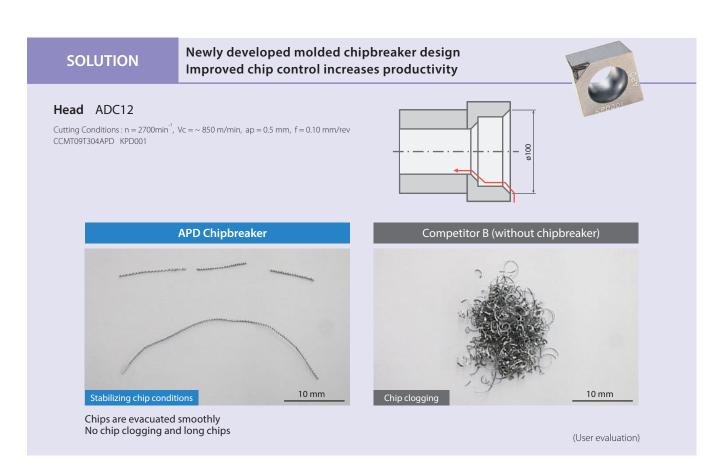
APD Chipbreaker

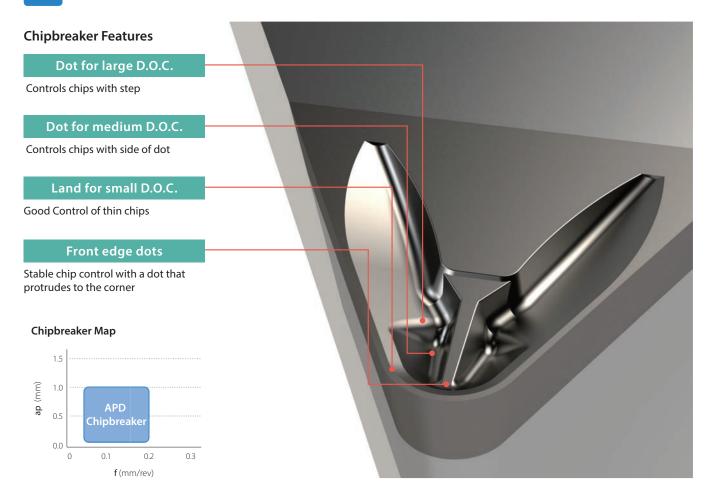
Beautiful Surface Finish

Superior Chip Control when Machining Aluminum

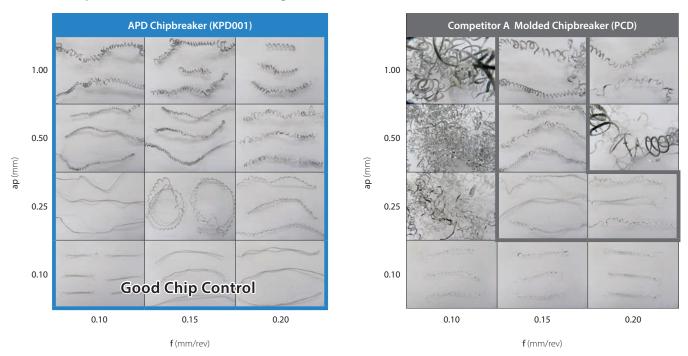
Good Chip Control Improves Productivity

Challenges


- ✓ Chip clogging causes machining downtime
- ✓ Reduced part quality with cloudy finish


Long chips cause these problems

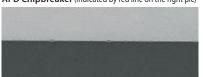
Chip clogging reduces surface finish quality


2

Newly Designed Molded Chipbreaker Controls Chips

Chip Control Comparison (Internal evaluation)

APD chipbreaker showed stable machining of less than 1 mm D.O.C. under various cutting conditions. Excellent chip control from small D.O.C. to large D.O.C.

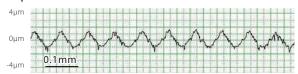


 $Cutting\ Conditions: Vc = 500\ m/min, ap = 0.1-1.0\ mm, f = 0.10-0.20\ mm/rev, Continuous\ external\ turning\ ,\ Wet,\ Workpiece: A5052-0.00\ mm/rev, Continuous\ external\ turning\ ,\ Wet,\ Workpiece: A5052-0.00\ mm/rev,\ Wet,\ Workpiece: A5052-0.00\ mm/rev,\ Wet,\ Workpiece: A5052-0.00\ mm/rev,\ Wet,\ Workpiece: A5052-0.00\ mm/rev,\ Wet,\ Wet,\ Wet,\ Wet,\ Wet,\ Wet,\ Wet,\ Wet,\ Wet,$

3 Excellent Surface Finish

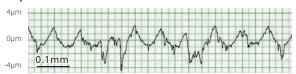
APD Chipbreaker with sharp edge showed better surface finish compared to competitor

APD Chipbreaker (Indicated by red line on the right pic)



Surface Finish Comparison (Internal evaluation)

APD Chipbreaker (KPD001)


0.64µmRa

Competitor D Molded Chipbreaker (PCD)

0.84µmRa

 $Cutting\ Conditions: Vc = 450\ m/min, ap = 0.25\ mm, f = 0.10\ mm/rev, Continuous\ external\ turning\ , Wet,\ Workpiece: ADC12$

Standard Stock Description

Shape		Description		Dim	ensions (No. of Cutting	KPD001		
		Description	IC	S	D	RE	LE	edge	KFD001
	LE 80° S	CCMT 09T302APD				0.2	2.7		•
O		09T304APD	9.525	3.97	4.4	0.4	2.7	1	•
		09T308APD				0.8	2.7		•
Jonas Japan	LE 655° -5 14	DCMT 11T302APD				0.2	2.7		•
		11T304APD	9.525	3.97	4.4	0.4	2.7	1	•
	IC IC	11T308APD				0.8	2.7		•
	LE S	TPMT 110302APD				0.2	2.6		•
		110304APD	6.35	3.18	3.3	0.4	2.5	1	•
APSOUT APS		110308APD				0.8	2.5		•

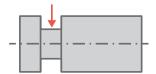
: Standard Stock

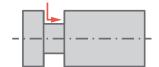
Recommended Cutting Conditions

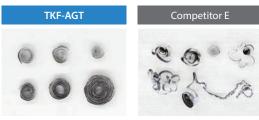
Workpiec	e	PCD KPD001	Notes	
	Vc : m/min	300 ~ 1,500		
Aluminum Alloy	ap(mm)	~ 1.0		
	fz(mm/t)	0.05 ~ 0.20	Wet	
	Vc : m/min	300 ~ 1,500	vvet	
Brass	ap(mm)	~ 1.0		
	fz(mm/t)	0.05 ~ 0.20		

Molded PCD Chipbreaker for KTKF holders

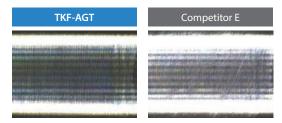
AGT Chipbreaker


Improved Chip Control for Various Aluminum Alloy Machining Applications




Stable Machining for a Wide Range of Applications

Chip control and surface finish comparison with grooving and traversing



Chip Control Comparison (Grooving)

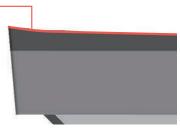
Cutting Conditions: Vc = 250 m/min, ap = 2.0 mm, Wet Workpiece: A6061

Surface Finish Comparison (Traversing)

Cutting Conditions : Vc = 250 m/min, ap = 0.5 mm, Wet Workpiece : A6061

AGT Chipbreaker showed better chip control when grooving compared to competitor. It also showed superior surface finish with less scratching when traversing.

2


Unique Chipbreaker Provides Excellent Chip Control

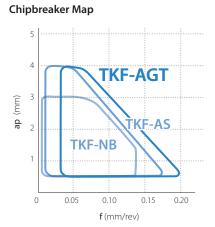
Traversing Reduces chip clogging by adjusting the width of the chipbreaker to the D.O.C. Dots around cutting edge for small D.O.C. Grooving Stable machining with three chipbreaker dots

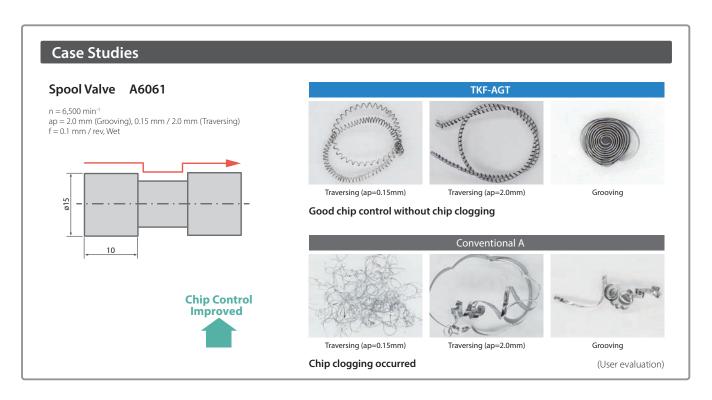
Sloped cutting edge

Reduces chattering with low cutting force design Good surface finish with excellent chip evacuation

Standard Stock Description

Shano		Doser	Description			Dimensions (mm)							No. of Cutting	KPD001
Shape		Description		CW	CDX	RE	W1	S	S1	D1	LE	PSIRR	edge	KPD001
40	CDX D1	TKF12R	200-AGT	2.0	4.8	+0 -0.05 0.1	3.0	8.7	8.3	5.0	4.2	0°	1	•
12			250-AGT	2.5	4.8	+0 -0.05 0.1	3.0	8.7	8.3	5.0	4.2	0°	1	•


: Standard Stock


Recommended Cutting Conditions

		PCD					
Wo	rkpiece	KPD001					
		Grooving	Traversing				
A1 . A11	Vc : m/min	200 ~ 500					
Aluminum Alloy	fz(mm/t)	0.03 ~ 0.15	0.03 ~ 0.20				
Brass	Vc : m/min	100 ~ 350					
DIdSS	fz(mm/t)	0.03 ~ 0.15	0.03 ~ 0.20				

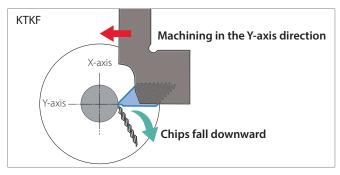
PCD inserts are for traversing and grooving applications.
 When using in cut-off machining, maximum cut-off diameter is ø8.

Set the feed rate less than 0.08mm/rev.
• Cutting with coolant is recommended.

Improved Chip Control

Y-axis Toolholder

New Special Shape Toolholder for Small Parts Machining



1

Controlled Chip Evacuation for Stable Machining

The Y-axis machining direction allows the chips to fall down and away from the workpiece, improving chip evacuation.

2

KTKF Grooving and Cut-Off System and External Turning Holders

KTKF

Back Turning, Threading and Cut-off

KTKFR1216JX-12-Y: Shank 1216 Type KTKFR1616JX-12-Y: Shank 1616 Type Applicable inserts: TKF12R...

For more details, see Kyocera Y-axis Toolholder catalog.

External Turning

Front turning

SDJCR1212JX-11FF-Y : Shank 1212 Type SDJCR1616JX-11FF-Y : Shank 1616 Type

Applicable inserts : DC 🗆 11T3...