

Fresa de Alta Eficiência e Alto Avanço

Série MFH

Usinagem Estável com Maior Resistência à Vibração

Diâmetros de corte a partir de ø8mm

Reduz o tempo de ciclo em aplicações de desbaste

MFH mini / micro fresas de alto avanço para pequenos centros de usinagem

MFH Micro ø8~ø16

MFH Mini ø16~ø50

MFH Harrier ø25~ø160

Série MFH

O design convexo da aresta de corte reduz a vibração para uma maior eficiência no desbaste Diversas opções de ferramentas de ø8 a ø160 para cobrir uma ampla gama de aplicações

MFH Micro

Substitui as Fresas de Topo Sólidas com Menor Custo de Usinagem

diâm. da fresa.

- Fresa de TopoTipo Modular
- ø8~ø16 ø8~ø16

MFH Mini

Inserto Econômico com 4 Arestas de Corte

ø16~ø32

ø16~ø32

diâm. da fresa

- Fresa de Topo
- Fresa de Faceamento ø40, ø50
- Tipo Modular

MFH Harrier

3 Diferentes Geometrias de Insertos para Diversas Opções de Usinagem

diâm. da fresa

- Fresa de Topo
- Fresa de Faceamento
 - resa de Faceamento (Tipo SOMT10) ø50, ø63, ø80 (Tipo SOMT14) ø50~ø160

(Tipo SOMT10) ø25~ø40

(Tipo SOMT14) ø50, ø63, ø80

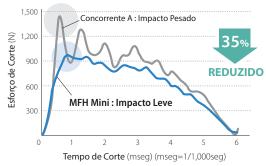
• Tipo Modular (Tipo SOMT10) ø25~ø40

Usinagem Estável com Excelente Resistência à Vibração

Novo Design Reduz o Esforço de Corte no Impacto Inicial

Aresta de corte tridimensional convexa

MFH Micro



MFH Mini

MFH Harrier

Esforço de Corte e Vibração ao Entrar na Peça (Avaliação Interna) (ap: Metade do Diâmetro da Fresa)

Condições de Corte: Vc = 150 m/min, fz = 1.0 mm/t, ap \times ae $= 0.5 \times 8$ mm, s/ refrig. Diâmetro da Fresa DC = ø16 mm Material: S50C

2

Uma Ampla Gama de Aplicações para Diversos Processos de Usinagem

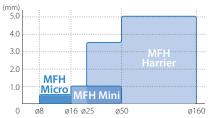
Faceamento & Fresamento Lateral

Fresamento de Canal

Fresamento em Rampa

Fresamento Helicoidal

Cavidade

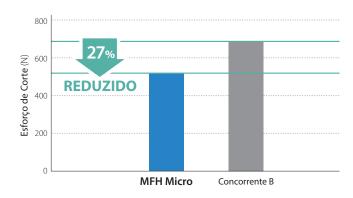

Contorno

MFH Harrie

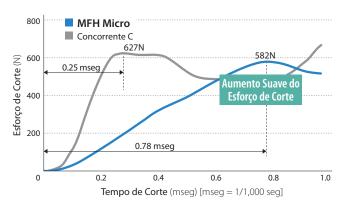
O quebra-cavaco GM está disponível para todas as aplicações acima. Os quebra-cavacos LD e FL não permitem fresamento helicoidal, em mergulho ("plunging") e contorno de parede. (Veja a capa traseira)

Fresa de Micro Diâmetro para Usinagem em Alto Avanço

MFH Micro (Diâmetro da Fresa ø8 - ø16)



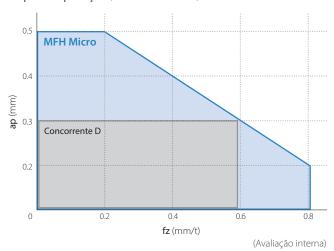
Usinagem de alta eficiência com baixo esforço de corte, resistente a vibração até ap 0.5 mm. Usinagem em alto avanço, estável, com ampla gama de aplicações


Baixo esforço de corte e resistência à vibração

Aresta de Corte Convexa, Controla o Impacto Inicial na Entrada da Peça

Comparação do Esforço de Corte (Avaliação Interna)

Condições de Corte : Vc = 120 m/min, fz = 0.6 mm/t, ap = 0.4 mm Diâmetro da Fresa DC = ø10 mm, Fresamento de Canal, Sem refrig., Material: S50C Aumento do Esforço de Corte na Entrada na Peça (Avaliação Interna)


Condições de Corte : Vc = 120 m/min. fz = 0.6 mm/t. $ap \times ae = 0.4 \times 5$ mm Diâmetro da Fresa DC = ø10 mm, Sem Refrig., Material: S50C

Ampla gama de produtos para usinagem em alto avanço

Ampla Gama de Aplicações, Usinagens até Profundidade de Corte Máxima de 0.5mm

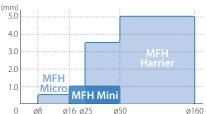
Usinagem Estável Mesmo com Pequenos Centros de Usinagem

Mapa de Aplicação (Fresar Diâm. ø10 mm)



Substitui Fresas de Topo Sólidas com Menor Custo de Usinagem

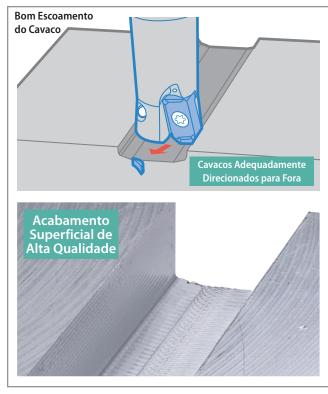
Elimina a Vibração e Aumenta a Eficiência no Fresamento

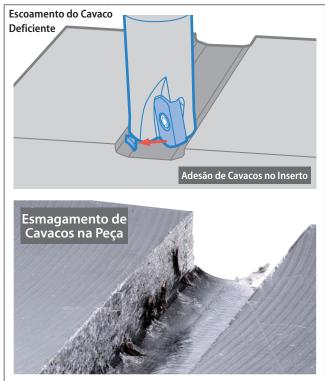

MFH Micro Comparado com Fresas de Topo Sólidas (Fresamento de Canal em Peça Mecânica, Material: S50C)

Fresa de Pequeno Diâmetro para Usinagem em Alto Avanço

MFH Mini Diâmetro da Fresa ø 16 - ø 50

Insertos Econômicos com 4 Arestas de Corte Diâmetro Pequeno, Tipo Passo Fino e Alto Avanço para Usinagem com Alta Eficiência


Bom Escoamento de Cavaco



Aresta de Corte Convexa do MFH Mini Controla o Esmagamento do Cavaco

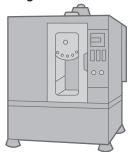
MFH Mini

Fresa de Alto Avanço do Concorrente

Condições de Corte: Diâmetro da Fresa DC = ø16 mm(2 Insertos), Vc = 150 m/min, fz = 0.6 mm/t, ap = 0.5 mm (20 passes): Total 10 mm × 16 mm, Sem refrig., Material: SS400

Passo Fino para Usinagem mais **Eficiente**

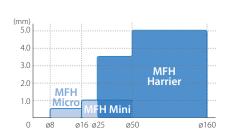
Diâmetro da Fresa de 25 mm



5 Insertos MFH25-S25-03-5T 2 Insertos MFH25-S25-10-2T

Adequado para Desbaste de Moldes

Usinagem em Alto Avanço em Pequenos Centros de Usinagem



Aplicável para BT30/BT40

Fresa de Alta Eficiência e Alto Avanço

MFH Harrier Fresa diam. Ø25 - Ø160

Ampla Gama de Produtos para Usinagem em Alto Avanço Grandes Profundidades e Baixos Eforços de Corte

Agora disponível também o quebra-cavaco GH Grande Linha de Insertos para Várias Aplicações

GM (Uso Geral)

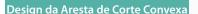
/ GH (Aresta Reforçada) NOVO

LD (Grande ap)

Primeira Recomendação para Usinagem em Geral

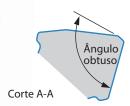
Excelente Resistência à Fratura

MAX. ap = 5 mm


Aresta Wiper com Baixo Esforço de Corte

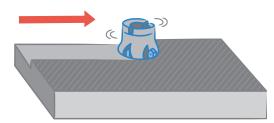
Excelente Acabamento Superficial e Menor VIbração

Processos Diversos


Disponível para Remoção de Crostas bem como Corte de Alto Avanço

Quebra-Cavaco GH com Excelente Resistência à Fratura

Reduz o esforço de corte ao tocar a peça Suprime a trepidação e a fratura


Aresta Reforçada

Combinada com o PR015S é adequada para usinagem de material endurecido e melhor resistência à fratura

O Quebra-cavaco LD pode ser usado tanto em Usinagem com Grande ap como em Alto Avanço

Grande ap para Remoção de Crostas

 $ap = 4.0 \, mm$

(fz = 0.25 mm/t, ap = 4 mm)

(fz = 1.5 mm/t, ap = 2 mm)

Desbaste (2 Passes) Após a Remoção da Crosta: Alta Taxa de Avanço

MFH Harrier

MFH063R-14-5T-22M (Fresa Diam. ø63 mm, 5 Insertos)

Desbaste para Remoção de Crostas (2 Passes): Grande ap

Vc = 200 m/min, fz = 0.25 mm/t $ap \times ae = 4 \times 40$ mm, Vf = 1,264 mm/min

Remoção de Cavaco

Peça : SS400

404 cc/min MFH

Fresa Convencional de 45° Cabeçote Diam. ø63 mm, 5 Insertos

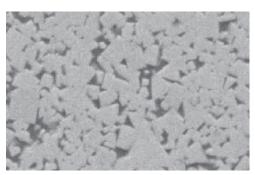
Desbaste (4 Passes): Profundidade de Corte Constante e Taxa de Avanço

Vc = 200 m/min, fz = 0.25 mm/t $ap \times ae = 3 \times 40$ mm, Vf = 1,264 mm/min Peça : SS400

Fresa Convencional

Vc = 200 m/min, fz = 1.5 mm/tap × ae = 2 × 40 mm, Vf = 7,583 mm/min

MEGACOAT NANO PR1535

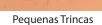

Classe PR1535 MEGACOAT NANO para usinagem estável de materiais de difícil usinagem, tais como liga resistente ao calor, liga de titânio e aço inoxidável endurecido por precipitação

Maior Resistência com Novo Mix de Cobalto *Avaliação Interna

a AUMENTO

Material Base com Metal Duro de Alta Tenacidade

2


Melhoria da Estabilidade

Maior resistência a choque mecânico e usinagem instável através da otimização das partículas. Melhoria da condutividade térmica em 11% comparado ao convencional Estrutura uniforme com menor propagação de trincas.

Avaliação de Propagação de Trinca através de Ponta de Prova Diamantada (Avaliação Interna)

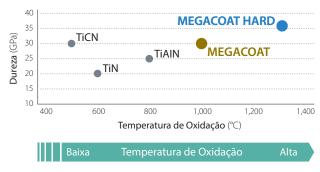
AUMENTO

Material de Base PR1535

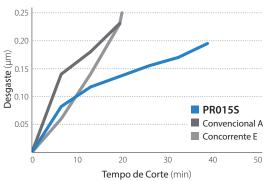
Grandes Trincas

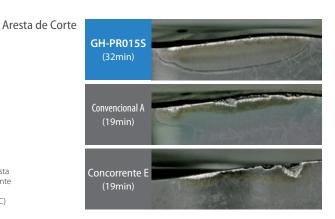
Para Material Endurecido

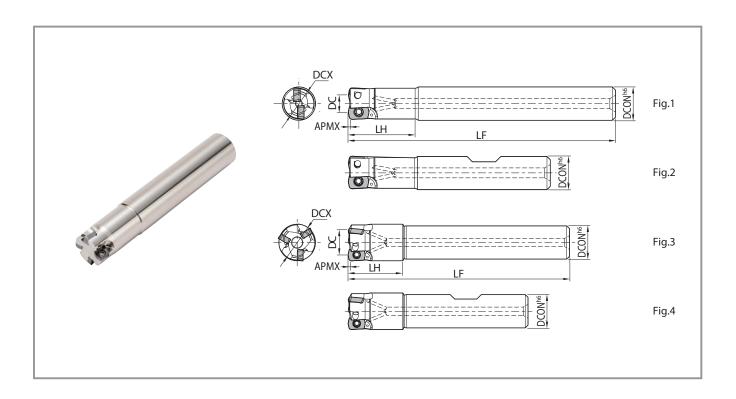
MEGACOAT HARD PR015S


Substrato com excelente propriedade térmica reduz as trincas e desgaste por entalhamento. Maior resistêcia ao desgaste com revestimento de alta dureza e resistente a temperatura.

A combinação permite uma usinagem estável em materiais endurecidos.


Maior resistência ao desgaste com Revestimento PVD de Alta Dureza e Resistência à Temperatura MEGACOAT HARD


A Combinação do Quebra-Cavaco GH e do PR015S Reduz as Trincas Térmicas e Melhora a Resistência à Fratura Usinagem Estável em Material Endurecido Propriedades do Revestimento (Avaliação Interna)

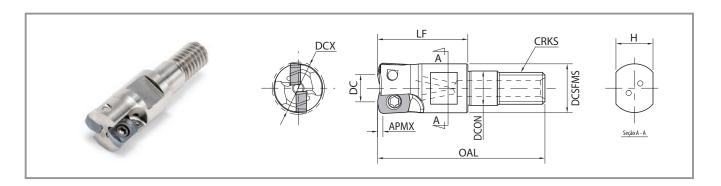


Comparação de Desempenho (Avaliação Interna)

Condições de Corte: Vc = 50 m/min, fz = 0.2 mm/t, ap = 1.0 × 31.5 mm, Com refrig. SOMT140520SR-GH Quebra-Cavaco de aresta reforçada do Concorrente (Tipo plano) Material: SKD11 (55HRC)

Dimensões do Suporte (Com Haste)

Haste	Descrição	Disponi-				Dimensõ	es (mm)			Ângulo de Rampa	Ângulo de inclinação	Furo de Refri-	Figura	Peso	Rotação Máxima
Haste	Descrição	bilidade	Insertos	DCX	DC	DCON	LF	LH	APMX	Máximo	A.R.	geração	riguia	(kg)	(min ⁻¹)
	MFH08-S10-01-1T	•	1	8	4.2	10	75	16		4°				0.04	20,000
Standard (Reto)	MFH10-S10-01-2T	•	2	10	6.2	10	80	20	0.5	3°	+5°	Yes	Eig 1	0.04	16,200
Stallualu (Neto)	MFH12-S12-01-3T	•	3	12	8.2	12	80	20	0.3	2°	+3	ies	Fig.1	0.06	14,000
	MFH16-S16-01-4T	•	4	16	12.2	16	90	25		1.2°				0.12	11,400
Longo (Reto)	MFH14-S12-01-3T	•	3	14	10.2	12	80	20	0.5	1.5°	+5°	Yes	Fig.3	0.07	12,500
	MFH08-W10-01-1T	•	1	8	4.2	10	58	16		4°				0.03	20,000
Standard (Weldon)	MFH10-W10-01-2T	•	2	10	6.2	10	60	20	0.5	3°	+5°	Yes	Fig.2	0.03	16,200
Stalidald (Weldoll)	MFH12-W12-01-3T	•	3	12	8.2	12	65	20	0.5	2°	Τ,	163	119.2	0.05	14,000
	MFH16-W16-01-4T	•	4	16	12.2	16	73	25		1.2°				0.1	11,400
Longo (Weldon)	MFH14-W12-01-3T	•	3	14	10.2	12	65	20	0.5	1.5°	+5°	Yes	Fig.4	0.05	12,500


Cuidado com a Rotação Máxima
 Ajuste a rotação conforme a velocidade de corte recomendada para o material na página 8.
 A força centrifuga gerada pela rotação da fresa acima de sua rotação máxima poderá causar dispersão de suas partes. Não utilize as fresas acima da rotação máxima recomendada, a força centrifuga poderá causar a dispersão de cavacos e peças, mesmo que sem carga

Pecas de Reposição e Insertos Aplicáveis

reças de neposiça	io e ilisertos Ap	licaveis		
	P	eças de Reposiçã	0	
	Parafuso de Fixação	Chave	Composto Antiengripante	
Descrição				Insertos Aplicáveis
MFH01	SB-1840TRP	FTP-6	P-37	LPGT010210ER-GM
	Torque Recome	ndado para Fixação do	Inserto 0.5N·m	

[•] Aplique uma fina camada de Composto Antiengripante (P37) na parte cônica e na rosca do parafuso de fixação

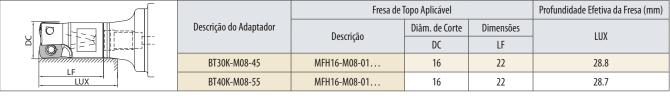
ullet : Item Standard

Dimensões do Suporte

Descrição	Disponi-					Dir	nensões	(mm)				Ângulo de Rampa	Ângulo de Inclinação	Furo de	Rotação Máx.
Descrição	bilidade	Insertos	DCX	DC	DCSFMS	DCON	OAL	LF	CRKS	Н	APMX	Máximo	A.R.	Refrigeração	(min ⁻¹)
MFH08-M06-01-1T	•	1	8	4.2	9.2							4°			20,000
MFH10-M06-01-2T	•	2	10	6.2	9.2	([20.5	17	MC + D1 0	_		3°			16,200
MFH12-M06-01-3T	•	3	12	8.2	11.2	6.5	30.5	17	M6×P1.0	/	0.5	2°	+5°	Sim	14,000
MFH14-M06-01-3T	•	3	14	10.2	11.2							1.5°			12,500
MFH16-M08-01-4T	•	4	16	12.2	14.7	8.5	39	22	M8×P1.25	12		1.2°			11,400

Use adaptadores disponíveis comercialmente (para ø8 - ø14 rosca: M6 x P1.0) Verifique a compatibilidade com a rosca da haste

: Itens Standard


Peças de Reposição e Insertos Aplicáveis

	P	eças de Reposiçã	0	
	Parafuso de Fixação	Chave	Composto Antiengripante	
Descrição				Insertos Aplicáveis
MFH01	SB-1840TRP Torque Reco	FTP-6 omendado de Inserção	P-37 de 0.5N·m	LPGT010210ER-GM

Cuidado com a Rotação Máxima
 Ajuste a rotação de acordo com a velocidade de corte recomendada especificada para a peça na página 8. Os insertos ou porta-ferramentas podem ser danificados pela força centrífuga se for utilizados em rotações que excedem o limite máximo especificado.

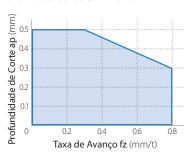
• Aplicar uma fina camada de Composto Antiengripante (P-37) na parte cônica e rosca antes da montagem.

Profundidade Efetiva da Fresa (MFH16-M08-01-4T)

Para Haste com Adaptador tipo BT, Ver Página 21

MFH Micro | Insertos Aplicáveis

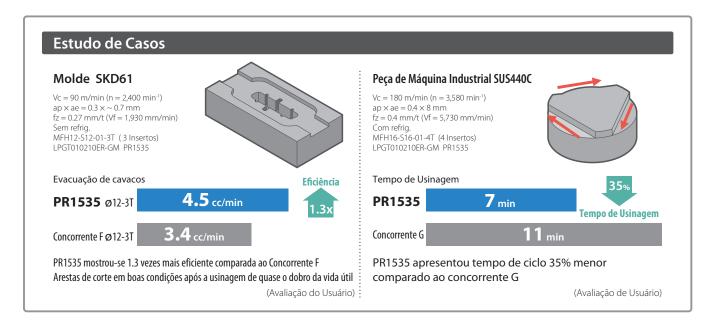
Inserto	Descrição		Dii	mensões (m	m)		MEGACO	AT NANO	Metal Duro CVD
	,	W1	S	D1	INSL	RE	PR1535	PR1525	CA6535
Uso Geral	LPGT 010210ER-GM	4.19	2.19	2.1	6.26	1.0	•	•	•

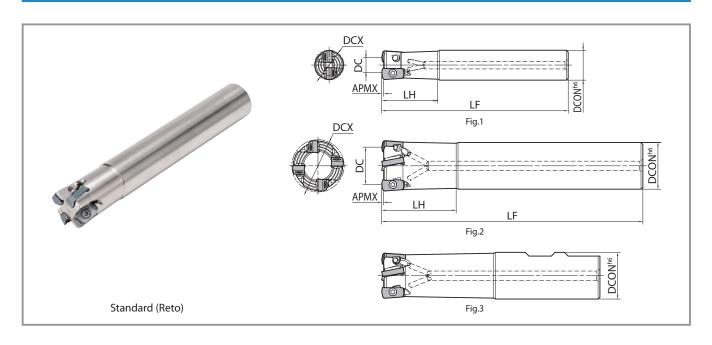

•: Itens Standard

MFH Micro | Mapa de Aplicação

Diam. de Corte: ø8 - ø12

Diam. de Corte ø14 - ø16




MFH Micro | Condições de Corte Recomendadas ★1ª Recomendação ☆2ª Recomendação

0:		Descrição do Supo	rte e Taxa de Avanço (Av	vanço Recomendado fz:	mm/t)ap = 0.3 mm (v	alores de referência)	Classe	Recomendada (Vc: m	ı/min)
Inserto	Material	MFH08	MFH10	MFH12	MFH14	MFH16	MEGACO	AT NANO	Metal Duro CVD
		-1T	-2T	-3T	-3T	-4T	PR1525	PR1535	CA6535
	Aço Carbono (SxxC)		0.2 - 0.4 - 0.6		0.2_0	.5 – 0.8	★ 120 – 180 – 250	120 − 180 − 250	-
	Ligas de Aço (SCM)		0.2 - 0.4 - 0.0		0.2 – 0	.5 – 0.0	★ 100 – 160 – 220	100 − 160 − 220	-
	Aço Molde (SKD)(~40HRC)		0.2 - 0.3 - 0.5		0.2 – 0	.4 – 0.6	★ 80 – 140 – 180	80 − 140 − 180	-
	Aço Molde (SKD)(40~50HRC)		0.2 - 0.25 - 0.3	}	0.2 – 0 .	25 – 0.4	★ 60 − 100 − 130	60 − 100 − 130	-
	Aço Inox Austenítico (SUS304)						100 − 160 − 200	★ 100 – 160 – 200	-
GM	Aço Inox Martensítico (SUS403)		0.2 – 0.3 – 0.5		0.2 – 0	.4 – 0.6	_	150 − 200 − 250	★ 180 – 240 – 300
	Aço Inox Endurecível por Precipitação (SUS630)						-	★ 90 − 120 − 150	-
	Ferro Fundido Cinzento (FC)		0.2 – 0.4 – 0.6		0.2 – 0	.5 – 0.8	★ 120 – 180 – 250	_	-
	Ferro Fundido Nodular (FCD)		0.2 – 0.3 – 0.5		0.2 – 0	.4 – 0.6	★ 100 − 150 − 200	_	-
	Ligas Resistentes a Temperatura a base de Ni - (Inconel®, etc.)		0.2 - 0.25 - 0.3		02.0	25 – 0.4	_	20 − 30 − 50	★ 20 – 30 – 50
	Ligas de Titânio (Ti-6Al-4V)		v.z — v.zɔ — v.ɜ)	U.Z — U.	23 — 0.4	_	★ 40 − 60 − 80	_

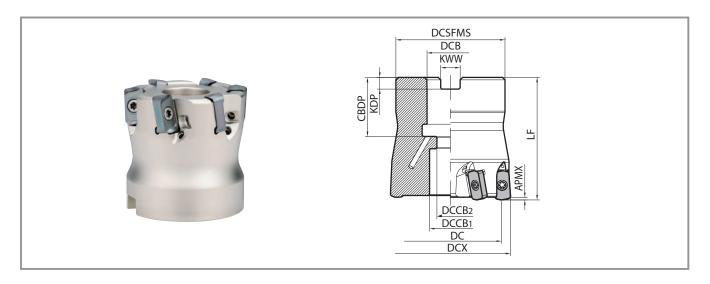
É recomendada uso de refrigerante para Ligas Resistentes a Temperatura à base de Ni e Ligas de Titânio

Os números em negrito indicam as condições iniciais recomendadas. Ajustar a velocidade de corte e a taxa de avanço nas condições acima descritas, de acordo com a situação de usinagem real É recomendado refrigerante interno para aplicações de fresamento de canais

Dimensões do Suporte

Hasta	Dosevicão	Disponi-	Nº de			Dimensô	ies (mm)			Ângulo de Inclinação	Furo de	Farmata	Doso (leg)	Rotação Máx.
Haste	Descrição	bilidade	Insertos	DCX	DC	DCON	LF	LH	APMX	A.R.	Refrige- ração	Formato	Peso (kg)	Rotação Máx. (min ⁻¹)
	MFH 16-S16-03-2T	•	2	16	8	16	100	30					0.1	18,800
	MFH 20-S20-03-3T	•	3	20	12	20	130	50					0.3	15,700
	20-S20-03-4T	•	4	20	12	20	130	50					0.3	15,700
Standard (Reto)	MFH 25-S25-03-4T	•	4	25	17	25	140	60				Fig.1	0.5	13,400
(11010)	25-S25-03-5T	•	5	25	17	25	140	60					0.5	13,400
	MFH 32-S32-03-5T	•	5	32	24	32	150	70]				0.8	11,400
	32-S32-03-6T	•	6	32	24	32	150	70]				0.8	11,400
	MFH 17-S16-03-2T	•	2	17	9	16	100	20					0.1	17,900
	MFH 18-S16-03-2T	•	2	18	10	16	100	20					0.1	17,000
Longo	MFH 22-S20-03-3T	•	3	22	14	20	130	30				Fig.2	0.3	14,700
(Reto)	22-S20-03-4T	•	4	22	14	20	130	30				riy.z	0.3	14,700
	MFH 28-S25-03-4T	•	4	28	20	25	140	40	1	-10°	Sim		0.5	12,400
	28-S25-03-5T	•	5	28	20	25	140	40] '	-10	31111		0.5	12,400
	MFH 16-W16-03-2T	•	2	16	8	16	79	30					0.1	18,800
	MFH 20-W20-03-3T	•	3	20	12	20	101	50					0.2	15,700
	20-W20-03-4T	•	4	20	12	20	101	50					0.2	15,700
Standard (Weldon)	MFH 25-W25-03-4T	•	4	25	17	25	117	60				Fig.3	0.4	13,400
(110.001)	25-W25-03-5T	•	5	25	17	25	117	60					0.4	13,400
	MFH 32-W32-03-5T	•	5	32	24	32	131	70					0.7	11,400
	32-W32-03-6T	•	6	32	24	32	131	70					0.7	11,400
	MFH 16-S16-03-2T-150	•	2	16	8	16	150	50					0.2	18,800
Haste Longa	MFH 20-S20-03-3T-160	•	3	20	12	20	160	80				Fig.1	0.3	15,700
(Reto)	MFH 25-S25-03-4T-180	•	4	25	17	25	180	100				rig. i	0.6	13,400
	MFH 32-S32-03-5T-200	•	5	32	24	32	200	120					1.1	11,400

: Itens Standard


Peças de Reposição e Insertos Aplicáveis

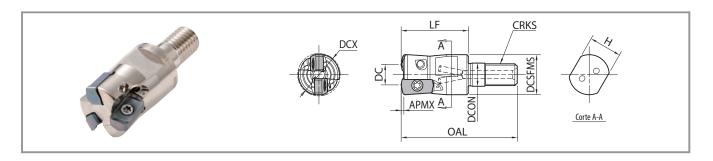
		Peças de Reposição		
	Parafuso de Fixação	Chave	Composto Antiengripante	
Descrição				Insertos Aplicáveis
MEII 02	SB-3065TRP	DTPM-8	P-37	LOGU030310ER-GM
MFH03	Torque Recome	ndado para Fixação d	o Inserto 1.2N·m	LOGU030310ER-GH

• Cuidado com a Rotação Máxima

- Cuiuado Corri a Rotação Maxima
Ajuste a rotação de acordo com a velocidade de corte
recomendada especificada para a peça na página 12.
Os insertos ou porta-ferramentas podem ser danificados pela
força centrífuga se for utilizados em rotações que excedem o
limite máximo especificado.

• Aplicar uma fina camada de Composto Antiengripante (P-37) na parte cônica e rosca antes da montagem.

Dimensões do Suporte

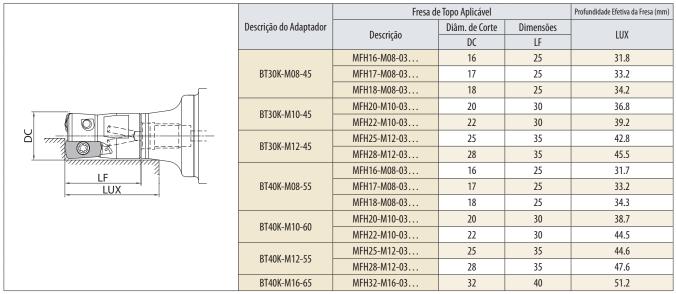

Padrão do		Docericão	Disponi-	Nº de					Dime	nsões (mr	n)					Ângulo de Inclinação	Furo de Refri-	Peso	Rotação Máx.
Espigão Descrição	bilidade	Insertos	DCX	DC	DCSFMS	DCB	DCCB ₁	DCCB ₂	LF	CBDP	KDP	KWW	APMX	A.R.	geração	(kg)	(min ⁻¹)		
	MFH	040R-03-5T-M	•	5	40	32	38	16	15	9	40	19	5.6	8.4				0.2	0.000
Métrico		040R-03-6T-M	•	6	40	32	38	16	15	9	40	19	5.6	8.4	1	-10°	Sim	0.2	9,900
	MFH	050R-03-8T-M	•	8	50	42	47	22	19	11	50	21	6.3	10.4				0.5	8,600

[·] Cuidado com a Rotação Máxima

•: Itens Standard

Ajuste a rotação de acordo com a velocidade de corte recomendada especificada para a peça na página 12. Os insertos ou porta-ferramentas podem ser danificados pela força centrífuga se for utilizados em rotações que excedem o limite máximo especificado.

MFH Mini | Modular

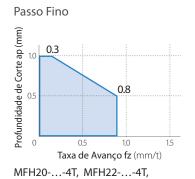

Dimensões do Suporte

	Descrição	Disponi-	Nº de				Dir	nensões (r	mm)				Ângulo de Inclinação	Furo de Refri-	Rotação Máx.
	Descrição	bilidade	Insertos	DCX	DC	DCSFMS	DCON	OAL	LF	CRKS	Н	APMX	A.R.	geração	(min ⁻¹)
MFH	16-M08-03-2T	•	2	16	8	14.7	8.5	42	25	M8×P1.25	12				18,880
MFH	17-M08-03-2T	•	2	17	9	14.7	8.5	42	25	M8×P1.25	12				17,900
MFH	18-M08-03-2T	•	2	18	10	14.7	8.5	42	25	M8×P1.25	12				17,000
MFH	20-M10-03-3T	•	3	20	12	18.7	10.5	48	30	M10×P1.5	15				15,700
	20-M10-03-4T	•	4	20	12	18.7	10.5	48	30	M10×P1.5	15				15,700
MFH	22-M10-03-3T	•	3	22	14	18.7	10.5	48	30	M10×P1.5	15				14,700
	22-M10-03-4T	•	4	22	14	18.7	10.5	48	30	M10×P1.5	15	1	-10°	Sim	14,700
MFH	25-M12-03-4T	•	4	25	17	23	12.5	56	35	M12×P1.75	19				13,400
	25-M12-03-5T	•	5	25	17	23	12.5	56	35	M12×P1.75	19				13,400
MFH	28-M12-03-4T	•	4	28	20	23	12.5	56	35	M12×P1.75	19				12,400
	28-M12-03-5T	•	5	28	20	23	12.5	56	35	M12×P1.75	19				12,400
MFH	32-M16-03-5T	•	5	32	24	30	17	62	40	M16×P2.0	24				11,400
	32-M16-03-6T	•	6	32	24	30	17	62	40	M16×P2.0	24				11,400

•: Itens Standard

Cuidado com a Rotação Máxima
 Ajuste a rotação de acordo com a velocidade de corte recomendada especificada para a peça na página 12.
 Os insertos ou porta-ferramentas podem ser danificados pela força centrifuga se for utilizados em rotações que excedem o limite máximo especificado.

Profundidade Efetiva da Fresa


Para Haste com Adaptador tipo BT, Ver Página 21

MFH Mini | Insertos Aplicáveis

		Inserto	Descrição		Dim	ensões (r	nm)		MI	EGACOAT NA	NO	MEGACOAT HARD	Metal Duro CVD
				W1	S	D1	INSL	RE	PR1535	PR1525	PR1510	PR015S	CA6535
	Uso Geral	TSNI S.	LOGU030310ER-GM	6.2	3.96	3.45	11.9	1.0	•	•	•	_	•
•	Aresta Reforçada	NSIN S S	LOGU030310ER-GH	6.2	3.96	3.45	11.9	1.0	•	•	•	•	-

: Itens Standard

MFH Mini | Mapa de Aplicação

MFH25-...-5T, MFH28-...-5T,

O.6

Taxa de Avanço fz (mm/t)

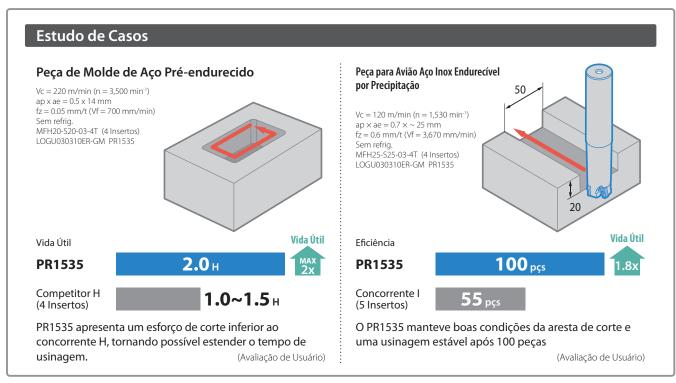
Standard (Diam. de Corte 16 – 22 mm)

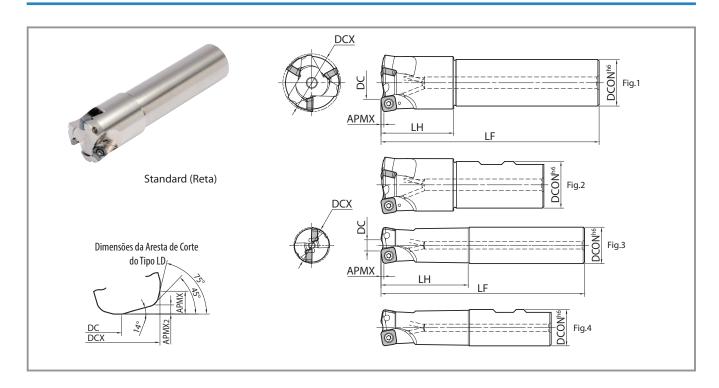
MFH16-...-2T, MFH17-...-2T, MFH18-...-2T, MFH20-...-3T, MFH22-...-3T Fresa de Faceamento (Diam. de Corte 40 – 50 mm) Standard (Diam. de Corte 25 – 32 mm)

MFH25-...-4T, MFH28-...-4T, MFH32-...-5T, MFH040R-..., MFH050R-...

Cuidado:

MF32-...-6T


As condições de corte recomendadas para fresas de passo fino devem ser inferiores à condição para fresas de passo padrão.


□ Standard

Passo Fino

			Descriçã	o do Supo	rte e Taxa de A	vanço (fz: mm/	/t) Avanço Rec	omendado ap =	= 0.5 mm(valore	s de referência)		Classe Rec	omendada (V	c: m/min)	
Inserto	N	laterial		MFH20	MFH20	MFH25	MFH25	MFH32	MFH32	MFH	М	EGACOAT NAI	10	MEGACOAT HARD	Metal Duro CVD
			21	3T	4T	4T	5T	5T	6T	R-03	PR1535	PR1525	PR1510	PR015S	CA6535
	,	Carbono (SxxC)	02-0	. 7 - 1.2	02-05-08	02-08-15	02-05-08	02-08-15	02-05-08	0.2 - 0.5 - 0.8	☆ 120 - 180 - 250	★ 120 - 180 - 250	-	-	-
	,	as de Aço (SCM)	0.2 - 0	.7 - 1.2	0.2 - 0.3 - 0.8	0.2 - 0.6 - 1.5	0.2 - 0.3 - 0.8	0.2 - 0.6 - 1.5	0.2 - 0.3 - 0.8	0.2 - 0.5 - 0.8	☆	★ 100 - 160 - 220	-	-	-
		(~40HRC)	0.2 - 0	.5 - 0.9	0.2 - 0.4 - 0.6	0.2 - 0.6 - 1.2	0.2 - 0.4 - 0.6	0.2 - 0.6 - 1.2	0.2 - 0.4 - 0.6	0.2 - 0.4 - 0.6	☆ 80 - 140 - 180	☆ 80 - 140 - 180	-	GH★ 80 - 140 - 180	-
	Aço Molde	(40~50HRC)	0.2 - 0	.3 - 0.5	0.2 - 0.25 - 0.3	0.2 - 0.3 - 0.6	0.2 - 0.25 - 0.3	0.2 - 0.3 - 0.6	0.2 - 0.25 - 0.3	0.2 - 0.25 - 0.3	-	☆ 60 - 100 - 130	-	GH★ 60 - 100 - 130	-
	(SKD)	(50~55HRC)	0.1 - 0	.3 - 0.5	0.1 - 0.2 - 0.3	0.1 - 0.3 - 0.5	0.1 - 0.2 - 0.3	0.1 - 0.3 - 0.5	0.1 - 0.2 - 0.3	0.1 - 0.2 - 0.3	=	☆ 50 - 70 - 100	_	GH★ 50 - 70 - 100	-
		(55~60HRC)		0.03	3 - 0.06 - 0.	1 (* Recome	ndado apena	s para quebr	a-cavaco GH)		-	_	_	GH☆ 50 - 60 - 70	-
GM GH	,	x Austenítico US304)									GM★ 100 - 160 - 200	GM☆ 100 - 160 - 200	_	-	-
	,	Martensítico US403)	0.2 - 0	.5 - 0.9	0.2 - 0.4 - 0.6	0.2 - 0.6 - 1.2	0.2 - 0.4 - 0.6	0.2 - 0.6 - 1.2	0.2 - 0.4 - 0.6	0.2 - 0.4 - 0.6	☆ 150 - 200 - 250	=	-	-	★ 180 - 240 - 300
	3	Endurecível por ação (SUS630)									★ 90 - 120 - 150	-	-	-	-
	Ferro Fur	ndido Cinzento (FC)	0.2 - 0	.7 - 1.2	0.2 - 0.5 - 0.8	0.2 - 0.8 - 1.5	0.2 - 0.5 - 0.8	0.2 - 0.8 - 1.5	0.2 - 0.5 - 0.8	0.2 - 0.5 - 0.8	-	-	★ 120 - 180 - 250	-	-
		ndido Nodular (FCD)	0.2 - 0	.5 - 0.9	0.2 - 0.4 - 0.6	0.2 - 0.6 - 1.2	0.2 - 0.4 - 0.6	0.2 - 0.6 - 1.2	0.2 - 0.4 - 0.6	0.2 - 0.4 - 0.6	-	-	★ 100 - 150 - 200	-	-
	Ligas Resistent Temperatura a bas Ligas de Titâl (Ti-6AI-4V		02.4	.3 - 0.6	0.2 0.25 0.4	02 04 09	0.2 0.25 0.4	02 04 00	0.2 0.25 0.4	0.2 - 0.25 - 0.4	20 - 30 - 50	-	-	-	★ 20 - 30 - 50
			U.Z - U	0.0 - د.	U.Z - U.Z3 - U.4	0.2 - 0.4 - 0.8	U.2 - U.25 - U.4	U.Z - U.4 - U.8	U.2 - U.25 - U.4	U.Z - U.Z3 - U.4	GM★ 40 - 60 - 80	-	GM☆ 30 - 50 - 70	-	-

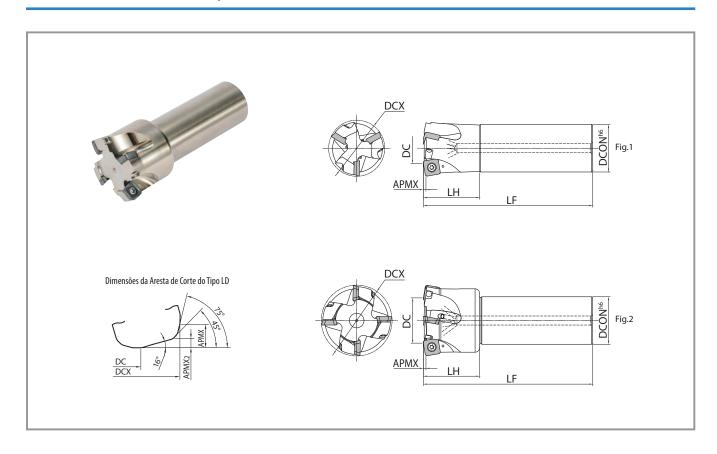
- Os números em negrito indicam as condições iniciais recomendadas. Ajustar a velocidade de corte e a taxa de avanço de acordo com a situação de
- usinagem real É recomendada a usinagem com refrigerante para Liga Resistente ao Calor à Base de Níquel e Liga de Titânio Na usinagem com BT30 ou equivalente, a taxa de avanço deve ser reduzida para 25% das condições de corte recomendadas
- É recomendado o uso de refrigerante interno para aplicações de fresamento de canais
 Não são recomendados o uso de fresa de faceamento para fresamento de cavidades e canais

Dimensões do Porta-Ferramenta (Tipo SOMT10)

Hasta	Day	cevica o	oilidade	Nº de				Din	nensões ((mm)				Ângulo de Inclinação	Furo de	Formato	Peso	Rotação Máx
Haste	Des	scrição	Disponibilidade	Insertos	DCX	GM•GH	DC LD	FL	DCON	LF	LH	APMX	APMX ₂	A.R.	Refrige- ração	Formato	(kg)	(min ⁻¹)
	MFH 25-S	525-10-2T	•	2	25	8	12.5	11.5	25	140	60					Fig.3	0.4	17,000
	MFH 28-S	525-10-2T	•	2	28	11	15.5	14.5	25	140	40					Fig.1	0.5	15,500
	MFH 32-S	32-10-2T	•	2	32	15	19.5	18.5	32	150	70	1.5				Fi = 2	0.8	14,000
Standard	32-S	32-10-3T	•	3	32	15	19.5	18.5	32	150	70	1.5	1.2	+10°	Sim	Fig.3	0.8	14,000
(Reto)	MFH 35-S	32-10-2T	•	2	35	18	22.5	21.5	32	150	50	(3.5)	1.2	+10	SIIII		0.8	13,000
	35-S	32-10-3T	•	3	35	18	22.5	21.5	32	150	50]				F:- 1	0.8	13,000
	MFH 40-S	32-10-3T	•	3	40	23	27.5	26.5	32	150	50					Fig.1	0.9	11,500
	40-S	32-10-4T	•	4	40	23	27.5	26.5	32	150	50						0.9	11,500
	MFH 25-V	W25-10-2T	•	2	25	8	12.5	11.5	25	117	60	1.5				Fig.4	0.4	17,000
Standard	MFH 32-V	V32-10-3T	•	3	32	15	19.5	18.5	32	131	70		1.2	+10°	Sim	rig.4	0.7	14,000
(Weldon)	MFH 40-V	V32-10-3T	•	3	40	23	27.5	26.5	32	112	50	(3.5)	1.2	+10	21111	Fi ~ 2	0.7	11,500
	40-V	V32-10-4T	•	4	40	23	27.5	26.5	32	112	50					Fig.2	0.7	11,500
	MFH 25-S	525-10-2T-200	•	2	25	8	12.5	11.5	25	200	120					Fig.3	0.6	17,000
Haste	MFH 28-S	525-10-2T-200	•	2	28	11	15.5	14.5	25	200	40	1.5				Fig.1	0.7	15,500
Longa	MFH 32-S	32-10-2T-200	•	2	32	15	19.5	18.5	32	200	120	(3.5)	1.2	+10°	Sim	Fig.3	1.0	14,000
(Reta)	MFH 35-S	32-10-2T-200	•	2	35	18	22.5	21.5	32	200	50	*				Γiα 1	1.4	13,000
	MFH 40-S	32-10-4T-250	•	4	40	23	27.5	26.5	32	250	50					Fig.1	1.5	11,500
Heata	MFH 25-S	525-10-2T-300	•	2	25	8	12.5	11.5	25	300	180					Fig.3	1.0	17,000
Haste	MFH 28-S	525-10-2T-300	•	2	28	11	15.5	14.5	25	300	40	1.5				Fig.1	1.1	15,500
Extra	MFH 32-S	32-10-2T-300	•	2	32	15	19.5	18.5	32	300	180	(3.5)	1.2	+10°	Sim	Fig.3	1.6	14,000
Longa (Bota)	MFH 35-S	32-10-2T-300	•	2	35	18	22.5	21.5	32	300	50	*				Fig. 1	1.7	13,000
(Reta)	MFH 40-S	32-10-4T-300	•	4	40	23	27.5	26.5	32	300	50	1				Fig.1	1.8	11,500

^{*} Dimensões em () quando montado com LD lacktriangle: Itens Standard

Pecas de Reposição e Insertos Aplicáveis


r cçus ac nepo.	sição e miser co	23 Aprileaveis		
	P	eças de Reposiçã	0	
	Parafuso de Fixação	Chave	Composto Antiengripante	
Descrição				Insertos Aplicáveis
	SB-4075TRP	DTPM-15	P-37	SOMT100420ER-GM SOMT100420ER-GH
MFH10	Torque Recom	nendado para Fixação do	Inserto 3.5N·m	SOMT100420ER-LD SOMT100420ER-FL

• Cuidado com a Rotação Máxima

- Cuiuduo CUII a NOTAÇÃO MAXIMA
Ajuste a rotação de acordo com a velocidade de corte recomendada especificada por peça na página 19-20.
Os insertos ou porta-ferramentas podem ser danificados pela força centrifuga se for utilizados em rotações que excedem o limite máximo especificado.

• Aplicar uma fina camada de composto antiengripante (P-37) na parte cônica e rosca antes da montagem.

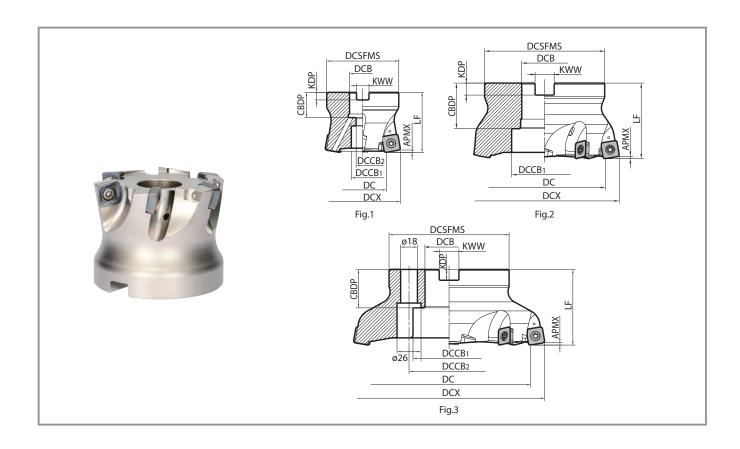
Condições de Corte Recomendadas → P19, P20

Dimensões do Porta-Ferramenta (Tipo SOMT14)

		Nº de				Dir	nensões (mm)				Ângulo de Inclinação	Furo de			Rotação Máx.
Descrição	Stock	Insertos	DCX	GM•GH	DC LD	FL	DCON	LF	LH	APMX	APMX ₂	A.R.	Refri- geração	Formato	Peso (kg)	(min ⁻¹)
MFH50-S42-14-3T	•	3	50	27	33	32	42	150	50					Fig. 1	1.4	8,800
MFH63-S42-14-4T	•	4	63	40	46	45	42	150	50	2 * (5)	2	+10°	Sim	Eig 2	1.7	7,400
MFH80-S42-14-5T	•	5	80	57	63	62	42	150	50					Fig. 2	2.3	6,400

^{*} Dimensões em () quando montado com LD •: Itens Standard

Pecas de Reposição e Insertos Aplicáveis


	Р	eças de Reposiçã	0	
	Parafuso de Fixação	Chave	Composto Antiengripante	
Descrição				Insertos Aplicáveis
MFH14	SB-50120TRP Torque Recomen	TTP-20 dado para Fixação do Ins	P-37 erto 4.5N·m	SOMT140520ER-GM SOMT140520ER-GH SOMT140520ER-LD SOMT140514ER-FL

[•] Cuidado com a Rotação Máxima

Condições de Corte Recomendadas → P19, P20

Ajuste a rotação de acordo com a velocidade de corte especificada para a peça na página 19-20
Os insertos ou porta-ferramentas podem ser danificados pela força centrífuga se for utilizados em rotações que excedem o limite máximo especificado.

[•] Aplicar uma fina camada de composto antiengripante (P-37) na parte cônica e rosca antes da montagem.

Dimensões do Suporte (Tipo SOMT10)

o Furo		D	ilidade	sertos							Dimen	sões (mm)						Ângulo de Inclinação	Furo de		Peso	Rotação
Diâm. do Furo		Descrição	Disponibilidade	N° de Insertos	DCX	GM•GH	DC LD	FL	DCSFMS	DCB	DCCB ₁	DCCB ₂	LF	CBDP	KDP	KWW	APMX	APMX ₂	A.R.	Refri- geração	Formato	(kg)	Max. (min ⁻¹)
	MFH	050R-10-4T	•	4	50	33	37.5	36.5	47	22.225	19	11	50	19	5	8.4						0.4	10,000
gada		050R-10-5T	•	5	50	33	37.5	36.5	47	22.225	19	11	50	19	5	8.4						0.4	10,000
Padrão Polegada	MFH	063R-10-5T	•	5	63	46	50.5	49.5	60	22.225	19	11	50	19	5	8.4				Sim	Fig.1	0.7	8,800
Padrê		063R-10-6T	•	6	63	46	50.5	49.5	60	22.225	19	11	50	19	5	8.4						0.7	8,800
	MFH	080R-10-7T	•	7	80	63	67.5	66.5	76	31.75	26	17	63	32	8	12.7						1.3	7,600
	MFH	050R-10-4T-M	•	4	50	33	37.5	36.5	47	22	19	11	50	21	6.3	10.4	1.5 (3.5)	1.2	+10°			0.4	10,000
		050R-10-5T-M	•	5	50	33	37.5	36.5	47	22	19	11	50	21	6.3	10.4	(3.3) *2	1.2	+10			0.4	10,000
	MFH	063R-10-5T-22M	•	5	63	46	50.5	49.5	60	22	19	11	50	21	6.3	10.4						0.7	8,800
Métrico		063R-10-6T-22M	•	6	63	46	50.5	49.5	60	22	19	11	50	21	6.3	10.4				Sim	Fig.1	0.7	8,800
		063R-10-5T-27M	•	5	63	46	50.5	49.5	60	27	20	13	50	24	7	12.4						0.7	8,800
		063R-10-6T-27M	•	6	63	46	50.5	49.5	60	27	20	13	50	24	7	12.4						0.7	8,800
	MFH	080R-10-7T-M	•	7	80	63	67.5	66.5	76	27	20	13	63	24	7	12.4						1.6	7,600

[•] Cuidado com a Rotação Máxima

Ajuste a rotação de acordo com a velocidade de corte especificada para a peça na página 19-20.

Os insertos ou porta-ferramentas podem ser danificados pela força centrifuga se for utilizados em rotações que excedem o limite máximo especificado

¹⁵

Dimensões do Suporte (Tipo SOMT14)

Diâm. do Furo			Disponibilidade	sertos							Dimens	sões (mm	1)						Ângulo de Inclinação		ato	Peso	Máx.
iâm. d		Descrição	sponib	N° de Insertos	DCX		DC		DCSFMS	DCB	DCCB ₁	DCCB ₂	LF	CBDP	KDP	KWW	APMX	APMX ₂	A.R.	Refri- geração	Formato	(kg)	Rotação (min ⁻¹)
D	MFH	050R-14-4T	ē	4	50	GM•GH 27	LD 33	FL 32	47	22.225	12	_	50	19	5	8.4						0.4	8,800
	MFH	063R-14-4T	•	4	63	40	46	45		22.225	19	11	50	19	5	8.4						0.6	7,400
		063R-14-5T	•	5	63	40	46	45	60	22.225	19	11	50	19	5	8.4						0.6	7,400
ıqa	MFH	080R-14-5T	•	5	80	57	63	62	76	31.75	26	17	63	32	8	12.7					Fig.1	1.3	6,400
Polega		080R-14-6T	•	6	80	57	63	62	76	31.75	26	17	63	32	8	12.7	(5)	2	+10°	Sim	119.1	1.3	6,400
Padrão Polegada	MFH	100R-14-6T	•	6	100	77	83	82	96	31.75	26	17	63	32	8	12.7	*2		110			2.4	5,600
9		100R-14-7T	•	7	100	77	83	82		31.75	26	17	63	32	8	12.7						2.4	5,600
	MFH	125R-14-7T	•	7	125	102	108	107	100	38.1	55	_	63	38	10	15.9						2.9	4,800
	MFH	160R-14-8T	•	8	160	137	143	142	100	50.8	72	_	63	38	11	19.1				Não	Fig.2	3.9	4,200
	MFH	050R-14-4T-M	_	4	50	27	33	32	47	22	12	_	50	21	6.3	10.4				INAU		0.4	8,800
		063R-14-4T-22M	•																				.,
	MFH		•	4	63	40	46	45	60	22	19	11	50	21	6.3	10.4						0.6	7,400
		063R-14-5T-22M	•	5	63	40	46	45	60	22	19	11	50	21	6.3	10.4					F: 4	0.6	7,400
		063R-14-4T-27M	•	4	63	40	46	45	60	27	20	13	50	24	7	12.4					Fig.1	0.6	7,400
9		063R-14-5T-27M	•	5	63	40	46	45	60	27	20	13	50	24	7	12.4	2			Sim		0.6	7,400
Métrico	MFH	080R-14-5T-M	•	5	80	57	63	62	76	27	20	13	63	24	7	12.4	(5) *2	2	+10°			1.4	6,400
		080R-14-6T-M	•	6	80	57	63	62	76	27	20	13	63	24	7	12.4						1.4	6,400
	MFH	100R-14-6T-M	•	6	100	77	83	82	96	32	26	17	63	28	8	14.4						2.4	5,600
		100R-14-7T-M	•	7	100	77	83	82	96	32	26	17	63	28	8	14.4					Fig.2	2.4	5,600
	MFH	125R-14-7T-M	•	7	125	102	108	107	100	40	55	-	63	33	9	16.4						2.8	4,800
	MFH	160R-14-8T-M	•	8	160	137	143	142	100	40	68	66.7	63	32	9	16.4				Não	Fig.3	3.7	4,200

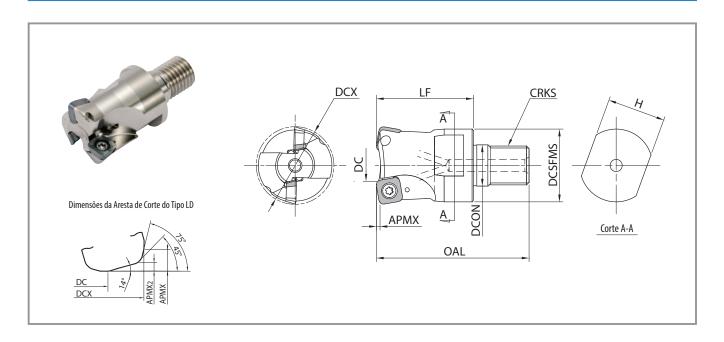
MHF050R-14-4T e MFH050R-14-4T-M têm parafusos duplos. Leia o manual de instruções que acompanha o porta-ferramenta sobre o seu método de manuseio * ¹ Veja APMX 2 na Página 16 * ² As dimensões em () referem-se ao Tipo LD • : Std. Item

• Cuidado com a Rotação Máxima

Ajuste o número de rotações por minuto com a recomendação de velocidade de corte especificada para a peça na página 19-20.
Os insertos ou porta-ferramentas podem ser danificados pela força centrífuga se for utilizados em rotações que excedem o limite máximo especificado

Peças de Reposição e Insertos Aplicáveis

			Peça	s de Reposição			
Descrição	Parafuso de	Fixação	Cha	ave	Composto Antiengripante	Parafuso do Mandril	insertos Aplicáveis
vesciiçau)	DTPM	TTP			ilisei tos Aplitaveis
MFH050R-10(-M)						HH10×30	
MFH063R-10(-22M)	SB-40901	TDDN	חדח	M-15	P-37	HH10×30	SOMT100420ER-GM
MFH063R-1027M	3D-40901	KPN	ואוט	VI-13	P-3/	HH12×35	SOMT100420ER-GH SOMT100420ER-LD
MFH080R-10		Torque Re	ecomendado para	Fixação do Insert	to 3.5N-m	HH16×40	SOMT100420ER-FL
MFH080R-10M						HH12×35	
MFH050R-14(-M)						W10×31	
MFH063R-14(-22M)						HH10×30	
MFH063R-1427M						HH12×35	
MFH080R-14	SB-50120	OTRP	TTP	-20	P-37	HH16×40	SOMT140520ER-GM
MFH080R-14M		Torquo D	ecomondado nara	ı Fixação do Insert	to 4 5N m	HH12×35	SOMT140520ER-GH SOMT140520ER-LD
MFH100R-14		ioique N	econiciluado para	i i ização do iliseli	ווו־אכ.ד ט	HH16×40	SOMT140514ER-FL
MFH100R-14M						-	
MFH125R-14						-	
MFH160R-14						-	


[•] Aplicar uma fina camada de composto antiengripante (P-37) na parte cônica e rosca antes da montagem

Dimensões da Aresta de Corte do Tipo LD

Recomendação de Condições de Corte → P19, P20

MFH Harrier | Modular Fresa de Topo

Dimensões do Suporte

	Docericão	Disponibilidade	Insertos						Dimer	ısões (m	m)					Ângulo de Inclinação		Rotação Máx.
	Descrição	Disponi	N° de lı	DCX	GM•GH	DC LD	FL	DCSFMS	DCON	OAL	LF	CRKS	Н	APMX	APMX ₂	A.R.	geração	(min ⁻¹)
MFH	25-M12-10-2T	•	2	25	8	12.5	11.5	23	12.5	56	35	M12×P1.75	19					17,000
MFH	28-M12-10-2T	•	2	28	11	15.5	14.5	23	12.5	56	35	M12×P1.75	19					15,500
MFH	32-M16-10-2T	•	2	32	15	19.5	18.5	30	17	62	40	M16×P2.0	24					14,000
	32-M16-10-3T	•	3	32	15	19.5	18.5	30	17	62	40	M16×P2.0	24	1.5	1.2	+10°	Sim	14,000
MFH	35-M16-10-2T	•	2	35	18	22.5	21.5	30	17	62	40	M16×P2.0	24	(3.5)	1.2	+10	SIIII	13,000
	35-M16-10-3T	•	3	35	18	22.5	21.5	30	17	62	40	M16×P2.0	24					13,000
MFH	40-M16-10-3T	•	3	40	23	27.5	26.5	30	17	62	40	M16×P2.0	24					11,500
	40-M16-10-4T	•	4	40	23	27.5	26.5	30	17	62	40	M16×P2.0	24					11,500

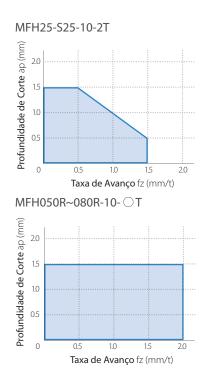
Peças de Reposição e Insertos Aplicáveis

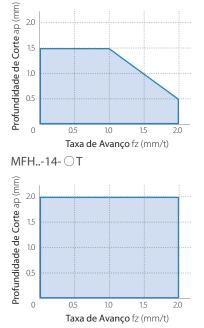
	Р	eças de Reposiçã	0	
	Parafuso de Fixação	Chave	Composto Antiengripante	
Descrição				Insertos Aplicáveis
MFH10	SB-4075TRP Torque Recom	DTPM-15 endado para Fixação do	P-37	SOMT100420ER-GM SOMT100420ER-GH SOMT100420ER-LD SOMT100420ER-FL

[•] Aplicar uma fina camada de composto antiengripante (P-37) na parte cônica e rosca antes a montagem.

Condições de Corte Recomendadas → P19, P20

^{*} Dimensões em () quando montado com LD ●: Itens Standard


Cuidado com a Rotação Máxima
 Ajuste a rotação de acordo com a velocidade de corte especificada para a peça na página 19-20
 Os insertos ou porta-ferramentas podem ser danificados pela força centrífuga se for utilizados em rotatões que excedem o limite máximo especificado


MFH Harrier | Insertos Aplicáveis

				Aço Ca	rbono / I	igas de	Aço			☆	*				
	lassificação do Uso	Р			Aço Mo					☆	*				
				Aço	Inox Au	stenítico)			*	☆				
		М		Aço	Inox Ma	rtensític	0			☆				*	
	Desbaste / 1ª Escolha		Aço in	oxidável	endurec	ido por į	orecipita	ıção		*					<u>—</u>
	Desbaste / 2ª Escolha	K		Ferro	Fundido	Cinzen	to					*			Suporte Aplicável
	Acabamento / 1ª Escolha	I N		Ferro	Fundid	o Nodula	ar					*			e Ap
□:/	Acabamento / 2ª Escolha	S	Ligas R	esistente	s a Temp	eratura	a base	de Ni		*				☆	port
)		Liga de	Titânio	(Ti-6Al-	4V)			*		☆			Su
		Н		Açı	de Alta	Dureza									
	Inserto		Descrição		Dime	nsões (r	nm)		Ângulo (°)	ME	GACOAT NA	NO.	MEGACOAT HARD	Metal Duro CVD	
			3	IC	S	D1	BS	RE	AN	PR1535	PR1525	PR1510	PR015S	CA6535	
	IC AN	SOM	T100420ER-GM	10.30	4.58	4.6	-	2.0	16	•	•	•	-	•	
Uso Geral	5	SOM	T140520ER-GM	14.14	5.56	5.8	-	2.0	16	•	•	•	-	•	
	IC AN	SON	T100420ER-LD	10.45	4.58	4.6	0.9	2.0	16	•	•	•	-	•	
Grande ap	BS S	SON	T140520ER-LD	14.76	5.56	5.8	1.6	2.0	16	•	•	•	_	•	P.13
	IC AN	SON	1T100420ER-FL	10.44	4.58	4.6	1.4	2.0	16	•	•	•	_	•	P.17
Aresta Wiper	BS S	SON	NT140514ER-FL	14.57	5.56	5.8	3.1	1.4	16	•	•	•	_	•	
	IC AN	SOM	T100420ER-GH	10.43	4.57	4.55	-	2.0	16	•	•	•	•	-	
Aresta Reforçada	S S	SOM	T140520ER-GH	14.17	5.56	5.8	-	2.0	16	•	•	•	•	_	

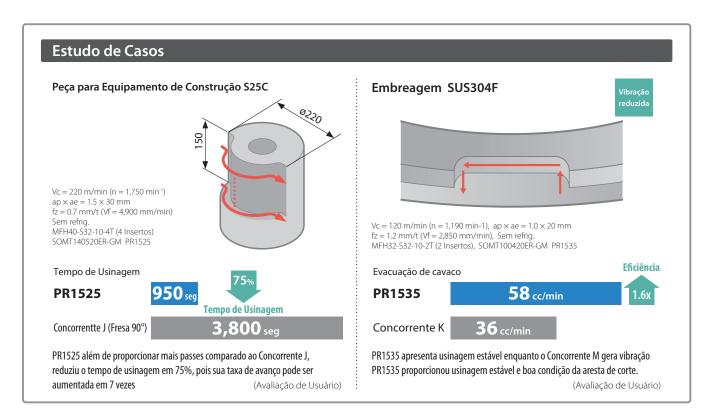
: Itens Standard

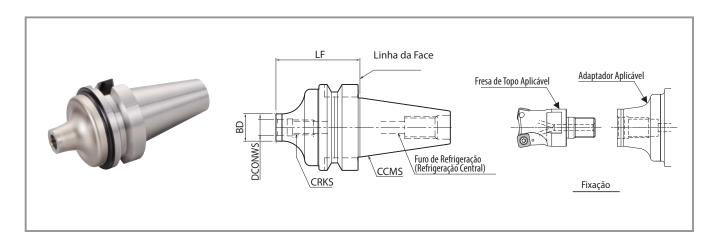
MFH Harrier | Mapa de Aplicação (GM/GH/FL)

MFH32-S32-10- OT

Quebra-Cavaco LD:

- A profundidade Máxima de Corte do Quebra-cavaco LD é 5mm (3.5mm para o tipo SOMT10)
 • Fresa de Topo: Consulte o mapa de
- aplicação acima
- Fresa de Faceamento: Taxa de avanço máximo (avanço por faca) fz = 2.0 mm/t

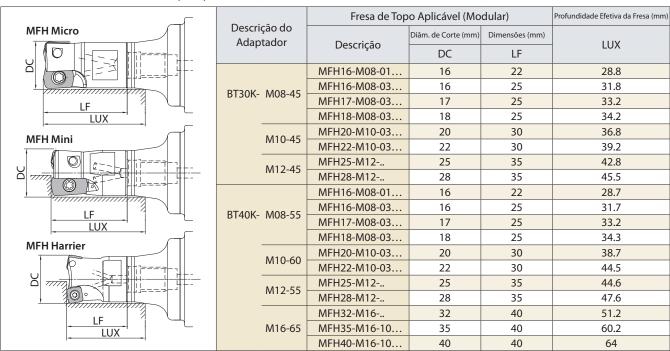

MFH Harrier | Condições de Corte Recomendadas → 1ª Recomendação ☆ 2ª Recomendação


				Descrição do S	uporte e Taxa de Avar	nço (fz: mm/t)			Classe Rec	omendada	(Vc: m/min)
Inserto	M	laterial	MFH25-	MFH32-	MFH40-	MFHR-10	MFH14	ME	GACOAT NA	NO	MEGACOAT HARD	Metal Duro CVD
				52				PR1535	PR1525	PR1510	PR015S	CA6535
		Carbono (SxxC)	0.5 - 0.8 - 1.0(ap ≤ 1.0mm) 0.2 - 0.4 - 0.5(ap ≤ 1.5mm)	0.5 - 1.0 - 1.5(ap ≤ 1.0mm) 0.3 - 0.7 - 1.0(ap ≤ 1.5mm)	0.5 - 1.2 - 1.8(ap ≦ 1.0mm) 0.4 - 1.0 - 1.5(ap ≦ 1.5mm)	0.5 - 1	1.5 - 2.0	☆ 120 - 180 - 250	★ 120 - 180 - 250	-	-	-
		as de Aço (SCM)	0.5 - 0.8 - 1.0(ap ≦ 1.0mm) 0.2 - 0.4 - 0.5(ap ≦ 1.5mm)	0.5 - 1.0 - 1.5(ap ≦1.0mm) 0.3 - 0.7 - 1.0(ap ≦1.5mm)	0.5 - 1.2 - 1.8(ap ≦ 1.0mm) 0.4 - 1.0 - 1.5(ap ≦ 1.5mm)	0.5 - 1	.5 - 2.0	☆ 100 - 160 - 220	★ 100 - 160 - 220	_	_	-
		(~40HRC)	0.5 - 0.7 - 0.8(ap ≦ 1.0mm) 0.2 - 0.3 - 0.4(ap ≦ 1.5mm)	0.5 - 0.8 - 1.2(ap ≤ 1.0mm) 0.3 - 0.6 - 0.8(ap ≤ 1.5mm)	0.5 - 1.0 - 1.6(ap ≤ 1.0mm) 0.4 - 0.8 - 1.2(ap ≤ 1.5mm)	0.5 - 1	.2 - 1.8	☆ 80 - 140 - 180	☆ 80 - 140 - 180	-	GH★ 80 - 140 - 180	-
	Aço	(40~50HRC)	0.15 - 0.3 - 0.5(ap ≤ 1.0mm) 0.15 - 0.2 - 0.25(ap ≤ 1.5mm)	0.2 - 0.5 - 0.8(ap ≤ 1.0mm) 0.2 - 0.3 - 0.45(ap ≤ 1.5mm)	0.2 - 0.6 - 0.9(ap ≤ 1.0mm) 0.2 - 0.5 - 0.7(ap ≤ 1.5mm)	0.2 - 0	1.7 - 1.0	-	☆ 60 - 100 - 130	-	GH★ 60 - 100 - 130	-
	Molde (SKD)	(50~55HRC)	0.15 - 0.25 - 0.4(ap ≦ 1.0mm)	0.15 - 0.35 - 0.6(ap ≦ 1.0mm)	0.15 - 0.4 - 0.7(ap ≦ 1.0mm)	0.2 - 0	1.5 - 0.8	-	☆ 50 - 70 - 100	-	GH★ 50 - 70 - 100	-
		(55~60HRC)	0.03 - 0. 0	06 - 0.1(ap ≦ 1.0mm)	(* Recomendado ap	enas para quebra-ca	avaco GH)	-	-	-	GH☆ 50 - 60 - 70	-
GM GH		x Austenítico US304)	0.5 - 0.7 - 0.8(ap ≦ 1.0mm) 0.2 - 0.3 - 0.4(ap ≦ 1.5mm)	0.5 - 0.8 - 1.2(ap ≤ 1.0mm) 0.3 - 0.6 - 0.8(ap ≤ 1.5mm)	0.5 - 1.0 - 1.6(ap ≤ 1.0mm) 0.4 - 0.8 - 1.2(ap ≤ 1.5mm)	0.5 - 1	.2 - 1.8	GM☆ 100 - 160 - 200	GM☆ 100 - 160 - 200	-	-	-
		Martensítico US403)	0.5 - 0.7 - 0.8(ap ≦ 1.0mm) 0.2 - 0.3 - 0.4(ap ≦ 1.5mm)	0.5 - 0.8 - 1.2(ap ≦ 1.0mm) 0.3 - 0.6 - 0.8(ap ≦ 1.5mm)	0.5 - 1.0 - 1.6(ap ≦ 1.0mm) 0.4 - 0.8 - 1.2(ap ≦ 1.5mm)	0.5 - 1	.2 - 1.8	☆ 150 - 200 - 250	-	-	-	★ 180 - 240 - 300
	por P	x Endurecível recipitação US630)	0.5 - 0.7 - 0.8(ap ≦ 1.0mm) 0.2 - 0.3 - 0.4(ap ≦ 1.5mm)	0.5 - 0.8 - 1.2(ap ≦ 1.0mm) 0.3 - 0.6 - 0.8(ap ≦ 1.5mm)	0.5 - 1.0 - 1.6(ap ≤ 1.0mm) 0.4 - 0.8 - 1.2(ap ≤ 1.5mm)	0.5 - 1	.2 - 1.8	★ 90 - 120 - 150	-	_	_	-
		o Fundido ento (FC)	0.5 - 0.8 - 1.0(ap ≦ 1.0mm) 0.2 - 0.4 - 0.5(ap ≦ 1.5mm)	0.5 - 1.0 - 1.5(ap ≦ 1.0mm) 0.3 - 0.7 - 1.0(ap ≦ 1.5mm)	0.5 - 1.2 - 1.8(ap ≦ 1.0mm) 0.4 - 1.0 - 1.5(ap ≦ 1.5mm)	0.5 - 1	1.5 - 2.0	-	-	★ 120 - 180 - 250	-	-
		o Fundido ular (FCD)	0.5 - 0.7 - 0.8(ap ≦ 1.0mm) 0.2 - 0.3 - 0.4(ap ≦ 1.5mm)	0.5 - 0.8 - 1.2(ap ≤ 1.0mm) 0.3 - 0.6 - 0.8(ap ≤ 1.5mm)	0.5 - 1.0 - 1.6(ap ≦ 1.0mm) 0.4 - 0.8 - 1.2(ap ≦ 1.5mm)	0.5 - 1	.2 - 1.8	-	-	★ 100 - 150 - 200	-	-
	Temper	lesistentes a ratura a base de Ni	0.2 - 0.4 - 0.6(ap ≦ 1.0mm) 0.15 - 0.2 - 0.3(ap ≦ 1.5mm)	0.2 - 0.5 - 0.9(ap ≦1.0mm) 0.2 - 0.4 - 0.6(ap ≦1.5mm)	0.2 - 0.6 - 1.0(ap ≤ 1.0mm) 0.2 - 0.5 - 0.8(ap ≤ 1.5mm)	0.2 - 0	1.8 - 1.2	20 - 30 - 50	_	-	_	★ 20 - 30 - 50
		de Titânio -6Al-4V)	0.2 - 0.4 - 0.6(ap ≦ 1.0mm) 0.15 - 0.2 - 0.3(ap ≦ 1.5mm)	0.2 - 0.5 - 0.9(ap ≦1.0mm) 0.2 - 0.4 - 0.6(ap ≦1.5mm)	0.2 - 0.6 - 1.0(ap ≦ 1.0mm) 0.2 - 0.5 - 0.8(ap ≦ 1.5mm)	0.2 - 0	1.8 - 1.2	GM★ 40 - 60 - 80	_	GM☆ 30 - 50 - 70	-	-
		Carbono (SxxC)	0.5 - 0.8 - 1.0(ap ≦ 1.0mm) 0.06 - 0.1 - 0.2(ap ≦ 3.5mm)	0.5 - 1.0 - 1.5(ap ≦ 1.0mm) 0.06 - 0.15 - 0.3(ap ≦ 3.5mm)	0.5 - 1.2 - 1.8(ap ≦ 1.0mm) 0.06 - 0.2 - 0.3(ap ≦ 3.5mm)	0.5 - 1.5 - 2.0(ap ≤ 1.0mm) 0.06 - 0.2 - 0.3(ap ≤ 3.5mm)	0.5 - 1.5 - 2.0(ap ≦ 2.0mm) 0.06 - 0.2 - 0.4(ap ≦ 5.0mm)	☆ 120 - 180 - 250	★ 120 - 180 - 250	-	-	-
		as de Aço (SCM)	0.5 - 0.8 - 1.0(ap ≦1.0mm) 0.06 - 0.1 - 0.2(ap ≦3.5mm)	0.5 - 1.0 - 1.5(ap ≤ 1.0mm) 0.06~ 0.15 ~0.3(ap ≤ 3.5mm)	0.5 - 1.2 - 1.8(ap ≦ 1.0mm) 0.06 - 0.2 - 0.3(ap ≦ 3.5mm)	0.5 - 1.5 - 2.0(ap ≤ 1.0mm) 0.06 - 0.2 - 0.3(ap ≤ 3.5mm)	0.5 - 1.5 - 2.0(ap ≤ 2.0mm) 0.06 - 0.2 - 0.4(ap ≤ 5.0mm)	☆ 100 - 160 - 220	★ 100 - 160 - 220	-	-	-
		o Molde (~40HRC)	0.5 - 0.7 - 0.8(ap ≤ 1.0mm) 0.06 - 0.08 - 0.15(ap ≤ 3.5mm)	0.5 - 0.8 - 1.2(ap ≦1.0mm) 0.06 - 0.1 - 0.2(ap ≦3.5mm)	0.5 - 1.0 - 1.6(ap ≦ 1.0mm) 0.06 - 0.15 - 0.2(ap ≦ 3.5mm)	0.5 - 1.2 - 1.8(ap ≦ 1.0mm) 0.06 - 0.15 - 0.2(ap ≦ 3.5mm)	0.5 - 1.2 - 1.8(ap ≦ 2.0mm) 0.06 - 0.15 - 0.3(ap ≦ 5.0mm)	☆ 80 - 140 - 180	★ 80 - 140 - 180	-	-	-
		o Molde 40~50HRC)	0.2 - 0.3 - 0.5(ap ≤ 1.0mm) 0.03 - 0.05 - 0.1(ap ≤ 3.5mm)	0.2 - 0.5 - 0.8(ap ≤ 1.0mm) 0.03 - 0.08 - 0.15(ap ≤ 3.5mm)	0.2 - 0.6 - 0.9(ap ≦ 1.0mm) 0.03 - 0.1 - 0.15(ap ≦ 3.5mm)	0.2 - 0.7 - 1.0(ap ≤ 1.0mm) 0.03 - 0.1 - 0.15(ap ≤ 3.5mm)	0.2 - 0.7 - 1.0(ap ≤ 2.0mm) 0.03 - 0.1 - 0.2(ap ≤ 5.0mm)	☆ 60 - 100 - 130	★ 60 - 100 - 130	-	-	-
		x Austenítico US304)	0.5 - 0.7 - 0.8(ap ≤ 1.0mm) 0.06 - 0.08 - 0.15(ap ≤ 3.5mm)	0.5 - 0.8 - 1.2(ap ≤ 1.0mm) 0.06 - 0.1 - 0.2(ap ≤ 3.5mm)	0.5 - 1.0 - 1.6(ap ≦ 1.0mm) 0.06 - 0.15 - 0.2(ap ≦ 3.5mm)	0.5 - 1.2 - 1.8(ap ≤ 1.0mm) 0.06 - 0.15 - 0.2(ap ≤ 3.5mm)	0.5 - 1.2 - 1.8(ap ≤ 2.0mm) 0.06 - 0.15 - 0.3(ap ≤ 5.0mm)	★ 100 - 160 - 200	☆ 100 - 160 - 200	-	-	-
LD		Martensítico US403)	0.5 - 0.7 - 0.8(ap ≦ 1.0mm) 0.06 - 0.08 - 0.15(ap ≦ 3.5mm)	0.5 - 0.8 - 1.2(ap ≦ 1.0mm) 0.06 - 0.1 - 0.2(ap ≦ 3.5mm)	0.5 - 1.0 - 1.6(ap ≦ 1.0mm) 0.06 - 0.15 - 0.2(ap ≦ 3.5mm)	0.5 - 1.2 - 1.8(ap ≤ 1.0mm) 0.06 - 0.15 - 0.2(ap ≤ 3.5mm)	0.5 - 1.2 - 1.8(ap ≤ 2.0mm) 0.06 - 0.15 - 0.3(ap ≤ 5.0mm)	☆ 150 - 200 - 250	-	-	-	★ 180 - 240 - 300
	por P	x Endurecível recipitação US630)	0.5 - 0.7 - 0.8(ap ≦ 1.0mm) 0.06 - 0.08 - 0.15(ap ≦ 3.5mm)	0.5 - 0.8 - 1.2(ap ≦ 1.0mm) 0.06 - 0.1 - 0.2(ap ≦ 3.5mm)	0.5 - 1.0 - 1.6(ap ≤ 1.0mm) 0.06 - 0.15 - 0.2(ap ≤ 3.5mm)	0.5 - 1.2 - 1.8(ap ≤ 1.0mm) 0.06 - 0.15 - 0.2(ap ≤ 3.5mm)	0.5 - 1.2 - 1.8(ap ≤ 2.0mm) 0.06 - 0.15 - 0.3(ap ≤ 5.0mm)	★ 90 - 120 - 150	_	-	-	-
		idido Cinzento (FC)	0.5 - 0.8 - 1.0(ap ≦ 1.0mm) 0.06 - 0.1 - 0.2(ap ≦ 3.5mm)	0.5 - 1.0 - 1.5(ap ≤ 1.0mm) 0.06 - 0.15 - 0.3(ap ≤ 3.5mm)	0.5 - 1.2 - 1.8(ap ≤ 1.0mm) 0.06 - 0.2 - 0.3(ap ≤ 3.5mm)	0.5 - 1.5 - 2.0(ap ≤ 1.0mm) 0.06 - 0.2 - 0.3(ap ≤ 3.5mm)	0.5 - 1.5 - 2.0(ap ≤ 2.0mm) 0.06 - 0.2 - 0.4(ap ≤ 5.0mm)	=	_	★ 120 - 180 - 250	_	-
		ndido Nodular (FCD)	0.5 - 0.7 - 0.8(ap ≦ 1.0mm) 0.06 - 0.08 - 0.15(ap ≦ 3.5mm)	0.5 - 0.8 - 1.2(ap ≦ 1.0mm) 0.06 - 0.1 - 0.2(ap ≦ 3.5mm)	0.5 - 1.0 - 1.6(ap ≤ 1.0mm) 0.06 - 0.15 - 0.2(ap ≤ 3.5mm)	0.5 - 1.2 - 1.8(ap ≦ 1.0mm) 0.06 - 0.15 - 0.2(ap ≦ 3.5mm)	0.5 - 1.2 - 1.8(ap ≦ 2.0mm) 0.06 - 0.15 - 0.3(ap ≦ 5.0mm)	=	_	★ 100 - 150 - 200	_	-
	Temper	lesistentes a ratura a base de Ni	0.2 - 0.4 - 0.6(ap ≦ 1.0mm) 0.03 - 0.05 - 0.1(ap ≦ 3.5mm)	0.2 - 0.5 - 0.9(ap ≦ 1.0mm) 0.03 - 0.08 - 0.15(ap ≦ 3.5mm)	0.2 - 0.6 - 1.0(ap ≤ 1.0mm) 0.03 - 0.1 - 0.15(ap ≤ 3.5mm)	0.2 - 0.8 - 1.2(ap ≤ 1.0mm) 0.03 - 0.1 - 0.15(ap ≤ 3.5mm)	0.2 - 0.8 - 1.2(ap ≤ 2.0mm) 0.03 - 0.1 - 0.2(ap ≤ 5.0mm)	☆ 20 - 30 - 50	-	-	-	★ 20 - 30 - 50
		de Titânio -6Al-4V)	0.2 - 0.4 - 0.6(ap ≦ 1.0mm) 0.03 - 0.05 - 0.1(ap ≦ 3.5mm)	0.2 - 0.5 - 0.9(ap ≦ 1.0mm) 0.03 - 0.08 - 0.15(ap ≦ 3.5mm)	0.2 - 0.6 - 1.0(ap ≦ 1.0mm) 0.03 - 0.1 - 0.15(ap ≦ 3.5mm)	0.2 - 0.8 - 1.2(ap ≤ 1.0mm) 0.03 - 0.1 - 0.15(ap ≤ 3.5mm)	0.2 - 0.8 - 1.2(ap ≤ 2.0mm) 0.03 - 0.1 - 0.2(ap ≤ 5.0mm)	★ 40 - 60 - 80	_	☆ 30 - 50 - 70	-	-

MFH Harrier | Condições de Corte Recomendadas ★1ª Recomendação ☆2ª Recomendação

			Descrição do Su _l	porte e Taxa de Avanç	o (fz: mm/t)			Classe Rec	omendada	(Vc: m/min)
Inserto	Material	MFH25-	MFH32-	MFH40-	MFHR-10	MFH14	ME	GACOAT NA	NO	MEGACOAT HARD	Metal Duro CVD
							PR1535	PR1525	PR1510	PR015S	CA6535
	Aço Carbono (SxxC)	0.5 - 0.8 - 1.0(ap ≤ 1.0mm) 0.2 - 0.4 - 0.5(ap ≤ 1.5mm)	0.5 - 1.0 - 1.5(ap ≤ 1.0mm) 0.3 - 0.7 - 1.0(ap ≤ 1.5mm)	0.5 - 1.2 - 1.8(ap ≤ 1.0mm) 0.4 - 1.0 - 1.5(ap ≤ 1.5mm)	0.5 - 1	.5 - 2.0	120 - 180 - 250	★ 120 - 180 - 250	_	_	_
	Ligas de Aço (SCM)	0.5 - 0.8 - 1.0(ap ≦ 1.0mm) 0.2 - 0.4 - 0.5(ap ≦ 1.5mm)	0.5 - 1.0 - 1.5(ap ≦ 1.0mm) 0.3 - 0.7 - 1.0(ap ≦ 1.5mm)	0.5 - 1.2 - 1.8(ap ≦ 1.0mm) 0.4 - 1.0 - 1.5(ap ≦ 1.5mm)	0.5 - 1	.5 - 2.0	100 - 160 - 220	★ 100 - 160 - 220	-	-	-
	Aço Molde (SKD) (~40HRC)	0.5 - 0.7 - 0.8(ap ≤ 1.0mm) 0.2 - 0.3 - 0.4(ap ≤ 1.5mm)	0.5 - 0.8 - 1.2(ap ≤ 1.0mm) 0.3 - 0.6 - 0.8(ap ≤ 1.5mm)	0.5 - 1.0 - 1.6(ap ≤ 1.0mm) 0.4 - 0.8 - 1.2(ap ≤ 1.5mm)	0.5 - 1	.2 - 1.8	80 - 140 - 180	★ 80 - 140 - 180	-	-	-
	Aço Molde (SKD) (40~50HRC)	0.15 - 0.3 - 0.5(ap ≤ 1.0mm) 0.15 - 0.2 - 0.25(ap ≤ 1.5mm)	0.2 - 0.5 - 0.8(ap ≤ 1.0mm) 0.2 - 0.3 - 0.45(ap ≤ 1.5mm)	0.2 - 0.6 - 0.9(ap ≤ 1.0mm) 0.2 - 0.5 - 0.7(ap ≤ 1.5mm)	0.2 - 0	1.7 - 1.0	60 - 100 - 130	★ 60 - 100 - 130	-	-	-
	Aço Inox Austenítico (SUS304)	0.5 - 0.7 - 0.8(ap ≤ 1.0mm) 0.2 - 0.3 - 0.4(ap ≤ 1.5mm)	0.5 - 0.8 - 1.2(ap ≦1.0mm) 0.3 - 0.6 - 0.8(ap ≦1.5mm)	0.5 - 1.0 - 1.6(ap ≤ 1.0mm) 0.4 - 0.8 - 1.2(ap ≤ 1.5mm)	0.5 - 1	.2 - 1.8	★ 100 - 160 - 200	100 - 160 - 200	-	-	-
FL	Aço Inox Martensítico (SUS403)	0.5 - 0.7 - 0.8(ap ≤ 1.0mm) 0.2 - 0.3 - 0.4(ap ≤ 1.5mm)	0.5 - 0.8 - 1.2(ap ≤ 1.0mm) 0.3 - 0.6 - 0.8(ap ≤ 1.5mm)	0.5 - 1.0 - 1.6(ap ≤ 1.0mm) 0.4 - 0.8 - 1.2(ap ≤ 1.5mm)	0.5 - 1	.2 - 1.8	150 - 200 - 250	-	=	-	★ 180 - 240 - 300
	Aço Inox Endurecível por Precipitação (SUS630)	0.5 - 0.7 - 0.8(ap ≤ 1.0mm) 0.2 - 0.3 - 0.4(ap ≤ 1.5mm)	0.5 - 0.8 - 1.2(ap ≤ 1.0mm) 0.3 - 0.6 - 0.8(ap ≤ 1.5mm)	0.5 - 1.0 - 1.6(ap ≦ 1.0mm) 0.4 - 0.8 - 1.2(ap ≦ 1.5mm)	0.5 - 1	.2 - 1.8	★ 90 - 120 - 150	-	-	-	-
	Ferro Fundido Cinzento (FC)	0.5 - 0.8 - 1.0(ap ≤ 1.0mm) 0.2 - 0.4 - 0.5(ap ≤ 1.5mm)	0.5 - 1.0 - 1.5(ap ≦1.0mm) 0.3 - 0.7 - 1.0(ap ≦1.5mm)	0.5 - 1.2 - 1.8(ap ≦ 1.0mm) 0.4 - 1.0 - 1.5(ap ≦ 1.5mm)	0.5 - 1	.5 - 2.0	-	-	★ 120 - 180 - 250	_	-
	Ferro Fundido Nodular (FCD)	0.5 - 0.7 - 0.8(ap ≤ 1.0mm) 0.2 - 0.3 - 0.4(ap ≤ 1.5mm)	0.5 - 0.8 - 1.2(ap ≤ 1.0mm) 0.3 - 0.6 - 0.8(ap ≤ 1.5mm)	0.5 - 1.0 - 1.6(ap ≤ 1.0mm) 0.4 - 0.8 - 1.2(ap ≤ 1.5mm)	0.5 - 1	.2 - 1.8	-	-	★ 100 - 150 - 200	-	-
	Ligas Resistentes a Temperatura a base de Ni	0.2 - 0.4 - 0.6(ap ≤ 1.0mm) 0.15 - 0.2 - 0.3(ap ≤ 1.5mm)	0.2 - 0.5 - 0.9(ap ≤ 1.0mm) 0.2 - 0.4 - 0.6(ap ≤ 1.5mm)	0.2 - 0.6 - 1.0(ap ≤ 1.0mm) 0.2 - 0.5 - 0.8(ap ≤ 1.5mm)	0.2 - 0	1.8 - 1.2	20 - 30 - 50	-	-		★ 20 - 30 - 50
	Ligas de Titânio (Ti-6Al-4V)	0.2 - 0.4 - 0.6(ap ≦ 1.0mm) 0.15 - 0.2 - 0.3(ap ≦ 1.5mm)	0.2 - 0.5 - 0.9(ap ≦ 1.0mm) 0.2 - 0.4 - 0.6(ap ≦ 1.5mm)	0.2 - 0.6 - 1.0(ap ≦ 1.0mm) 0.2 - 0.5 - 0.8(ap ≦ 1.5mm)	0.2 - 0	1.8 - 1.2	★ 40 - 60 - 80	-	☆ 30 - 50 - 70	-	-

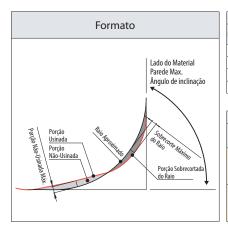
- Os números em negrito indicam as condições iniciais recomendadas. Ajustar a velocidade de corte e a taxa de avanço nas condições acima descritas, de acordo com a situação de usinagem real
 É recomendado uso de refrigerante para Ligas Resistentes a Temperatura à base de Ni, e Ligas de Titânio
 Na usinagem com BT30 ou equivalente, a taxa de avanço deve ser reduzida para 25% das condições de corte recomendadas
 Refrigerante interno é recomendado para aplicações de fresamento de canais



Dimensões

Descrição		isponi-	Dimensões (mm)				Furo de Refri-	Adaptador (Fixação em 2 faces)	Fresa de Topo Aplicável
Descrição	bil	bilidade	LF	BD	DCONWS	CRKS	geração	CCMS	(Modular)
BT30K- M08-	45	•	45	14.7	8.5	M8×P1.25			MFHM08
M10-	45	•	45	18.7	10.5	M10×P1.5	Sim	BT30	MFHM10
M12-	45	•	45	23	12.5	M12×P1.75			MFHM12
BT40K- M08-	55	•	55	14.7	8.5	M8×P1.25			MFHM08
M10-	60	•	60	18.7	10.5	M10×P1.5	Sim	BT40	MFHM10
M12-	55	•	55	23	12.5	M12×P1.75	اااند	0140	MFHM12
M16-	65	•	65	30	17	M16×P2.0			MFHM16

: Itens Standard


Profundidade Efetiva da Fresa (mm)

Sistema de Identificação do Adaptador

Programa Aproximado de Ajuste do Raio

	MFH Micro		MFH Mini			
Raio do Programa (mm)	Sobrecorte Máximo do Raio (mm)	Porção Máxima Não Usinada (mm)	Raio do Programa. (mm)	Sobrecorte Máximo do Raio (mm)	Porção Máxima Não Usinada (mm)	
R1.0	0	0.21	R1.6 (Recomendado)	0	0.39	
R1.2 (Recomendado)	0	0.17	R2.0	0.09	0.35	
R1.5	0.08	0.1	R2.5	0.26	0.26	
R2.0	0.28	0.01	R3.0	0.46	0.17	

*O Ângulo de Corte para MFH Micro/MFH Mini é 12° O Ângulo de Inclinação Max. da Parede Lateral é 90°

MFH Harrier (GM • GH)										
Descrição	Inserto	Ângulo da Aresta de Corte γ	Raio do Programa (mm) (Recomendado)	Sobrecorte Máximo do Raio (mm)	Porção Máxima Não Usinada(mm)	Ângulo de Inclinação da Parede Max.				
MFH10	GM • GH	10°	R3.0	0	0.85	90°				
	LD	14°	R3.5	0	0.69	65°				
	FL	14°	R3.0	0	0.89	80°				
	GM • GH	10°	R3.5	0	1.37	90°				
MFH14	LD	16°	R5.0	0	1.06	65°				
	FL	13°	R3.0	0	1.36	80°				

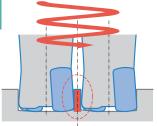

Dados de Referência para Rampa

Descrição	Diâm. de Corte DCX (mm)	8	10	12	14	16					
MFH Micro	Ângulo da Rampa Máx. RMPX	4°	3°	2°	1.5°	1.2°					
MILLI MICLO	tan RMPX	0.070	0.052	0.035	0.026	0.021					
Descrição	Diâm. de Corte DCX (mm)	16	17	18	20	22	25	28	32	40	50
MFH Mini	Ângulo da Rampa Máx. RMPX	2.8°	2.5°	2.1°	1.7°	1.4°	1.2°	1°	0.8°	0.5°	0.4°
IVIFH IVIIIII	tan RMPX	0.049	0.042	0.037	0.030	0.024	0.021	0.017	0.014	0.009	0.007
Descrição	Diâm. de Corte DCX (mm)	25	28	32	35	40	50	63	80		
MFH Harrier	Ângulo da Rampa Máx. RMPX	5°	4.5°	4°	3.5°	3°	2.5°	2°	1°		
(MFH10)	tan RMPX	0.087	0.078	0.070	0.061	0.052	0.043	0.035	0.017		
Descrição	Diâm. de Corte DCX (mm)	50	63	80	100	125	160				
MFH Harrier	Ângulo da Rampa Máx. RMPX	2°	1.8°	1°	0.5°	0.4°	0.2°				
(MFH14)	tan RMPX	0.035	0.031	0.017	0.009	0.007	0.003				

Notas sobre Usinagem em Rampa

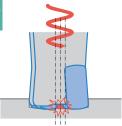
Nas condições de corte acima, o ângulo de usinagem em rampa deve ser menor que RMPX (ângulo máximo de usinagem em rampa) Reduzir a taxa de avanço em 70% da recomendada nas condições de corte acima.

Fórmula para Comprimento Máximo de Corte (L) sobre Ângulo Máximo de Usinagem em Rampa L = $\frac{ap}{tan RMPX}$



Notas sobre Usinagem Helicoidal

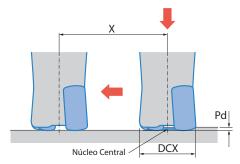
Para fresamento helicoidal, o diâmetro deve ser entre o diâmetro de perfuração Mín. e o diâmetro de perfuração Máx.



Sobra de um Núcleo Central após a Usinagem

Abaixo do Diâmetro Mín. Usinável

Núcleo Central Remanecente Bate no Coropo do Suporte

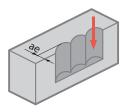

Descrição	Diâm. Mín. de Corte øDh1	Diâm. Máx. de Corte øDh2	Profundidade máxima da rampa por ciclo
MFH Micro	2×DCX-3.5	2×DCX-2	0.5 mm
MFH Mini	2×DCX-8	2×DCX-2	1 mm
MFH Harrier (MFH10)	2×DCX-18	2×DCX-2	GM = 1.5 mm
MFH Harrier (MFH14)	2×DCX-25	2×DCX-2	GM = 2 mm

Use fresamento concordante. (Consulte os detalhes à direita)

As taxas de avanço devem ser reduzidas para 50% do recomendado.

Cuidado no manuseio de eventuais cavacos afiados.

Notas sobre Furação


	Profundidade	Comprimento Mín.
Descrição	Máx. de	de Corte X para uma
3	Furação Pd	Superfície Plana
MFH Micro	0.5	DCX-3.5
MFH Mini	1.0	DCX-9

Unidade: mm

	GM • GH			LD	FL		
Descricão	Profundidade	Comprimento Mín	Profundidade	Comprimento Mín	Profundidade	Comprimento Mín.	
Descrição	Máx de	de Corte X para uma	Máx de	de Corte X para uma	Máx. de	de Corte X para uma	
	Furação Pd	Superfície Plana	Furação Pd	Superfície Plana	Furação Pd	Superfície Plana	
MFH Harrier (MFH10)	1.5	DCX-18	1.5	DCX-14	1.5	DCX-15	
MFH Harrier (MFH14)	2.0	DCX-24	2.0	DCX-18	2.0	DCX-19	

Recomenda-se reduzir o avanço em 25% até que o núcleo central seja removido. A taxa de avanço axial recomendada por rotação é f < 0.2mm/rev.

Mergulho (Plunging)

Os quebra-cavacos LD e FL não são apropriados para fresamento em mergulho. Reduzir a taxa de avanço para fz ≤ 0.2mm/t para fresamento em mergulho.

Unidade: mm

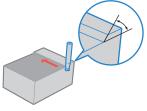
Descrição	Largura Máxima de corte (ae)
MFH Micro	1.7
MFH Mini	3.5
MFH Harrier (MFH10)	8 (GM • GH)
MFH Harrier (MFH14)	11.5 (GM • GH)

Usinagem em 3D (MFH Harrier)

O quebra-cavaco GM pode ser aplicada em todas as operações

Faceamento & Fresamento Lateral

Canal


Rampa

Fresamento Helicoidal

Cavidade

Contorno

MFH Harrier

Inserto	Rampa	Contorno (Ângulo da Inclinação da Parede)	Mergulho (Plunging)	Fresamento Helicoidal	Cavidade
GM • GH	0	○ (90°)	0	0	0
LD	0	△ (65°)	×	×	×
FL	0	△ (80°)	×	×	×

^{*}Para o tipo FL e LD, há um limite o ângulo da parede em operação de contorno