

Serie MFH Estudio de Caso

Fresa de Alta Eficiencia y Alto Avance

Serie MFH

La Tecnología Conduce a un Futuro Brillante

Este folleto presenta varios ejemplos de la fresa de alta eficiencia y alto avance de la serie MFH de KYOCERA desde el punto de vista de la neutralidad de carbono. Nos gustaría contribuir a un futuro brillante de nuestros clientes.

Tabla de Contenidos

Introducción

Características de la Serie MFH

Uso de la MFH · · · · · 3 ~ 4

MFH Micro

CASO1 ~ CASO2 · · · · · 5

MFH Mini

CASO3 6

MFH Harrier

CASO4 ~ CASO10 ····· 6 ~ 9

MFH Boost

CASO11 ~ CASO19 · · · · · · 10 ~ 14

Sostenibilidad del Grupo KYOCERA

El Razonamiento de Gestión del Grupo KYOCERA es "Ofrecer oportunidades para el crecimiento material e intelectual de todos nuestros empleados y, a través de nuestros esfuerzos conjuntos, contribuir al avance de la sociedad y la humanidad". Creemos que el mantenimiento de nuestro Razonamiento de Gestión conducirá naturalmente a la consecución de nuestros ODS a nivel internacional, y que nuestra misión es realizar los negocios de forma que satisfagan las necesidades de la sociedad.

El Grupo KYOCERA comienza por considerar las condiciones sociales, las tendencias de la comunidad internacional v el entorno externo que rodea a nuestra empresa, así como las principales prioridades sociales y de gestión identificadas a través del diálogo con las partes interesadas. A continuación, el Comité de RSC del Grupo KYOCERA delibera e

identifica las principales prioridades que el Grupo Kyocera debe abordar para que las cuestiones importantes se resuelvan a través de los negocios.

Lea aquí para el sitio web de Sostenibilidad del Grupo KYOCERA

Neutralidad de Carbono en el Negocio de Herramientas de Corte de KYOCERA

El Grupo de Herramientas Industriales de Kyocera se esforzará por minimizar las emisiones de CO2 a lo largo de toda la cadena de valor de las Herramientas de Corte, desde el desarrollo, la adquisición, la distribución, la venta y el mecanizado del producto, la recuperación y reutilización y la eliminación de recursos.

"Mecanizado de Alta Eficiencia = Conservación de Energía

- · Mecanizado de alta eficiencia = Conservación de energía en una amplia gama de máquinas
- Mecanizado de alta calidad por nuestros nuevos productos
 Suministro de productos ambientalmente conscientes aprobados por la JTA

Apoyo a las industrias respetuosas uesta de mecanizado de alta eficiencia con el medio ambiente Reducción de defectos de mecanizado neutral Reciclaje del **Ambientales**

Conservación de energía Conservación de recursos

Cinco puntos clave para la neutralidad de carbono en herramientas de corte

Consideraciones

metal duro

KYOCERA Tiene Como Objetivo Guiar el Futuro de la Manufactura

Utilizando la tecnología DX De un mundo determinado Después del mecanizado a un mundo que podemos ver antes de que tenga lugar el mecanizado

- · Propuesta de herramienta dinámica utilizando la tecnología de análisis
- · Reducir el tiempo de corte optimizando las condiciones de mecanizado
- · Predeterminar los problemas de mecanizado y tomar contramedidas por adelantado

Persiguiendo un mecanizado de mayor eficiencia

- Mejora drástica de la productividad a través del desarrollo de herramientas de alto valor añadido
- Esfuerzos activos para crear nuevos métodos de desarrollo
- Herramental completo para componentes de última generación y componentes industriales respetuosos con el medio ambiente

Estamos comprometidos con la neutralidad de carbono al trabajar con nuestros clientes para aumentar nuestras capacidades tecnológicas, mejorar la productividad y crear valor añadido.

Serie MFH

Reducir la Fuerza de Corte en el Impacto Inicial con un Mecanizado Estable, Excelente Resistencia a las Vibraciones y un Diseño de Borde Helicoidal Convexo

MFH Micro

MFH Mini

MFH Harrier

MFH Boost

Fuerza de Corte y Vibración al Acercarse a la Pieza de Trabajo (Evaluación Interna)

(ap: la Mitad del Diámetro de la Fresa)

Condiciones de corte : $Vc = 150 \text{ m/min, ap} \times ae = 0.5 \times 8 \text{ mm, fz} = 1.0 \text{ mm/t,}$ Sin refrigeración, Diámetro del cortador DC = ø16 mm, Pieza de trabajo: S50C

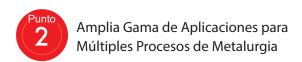
MFH Micro

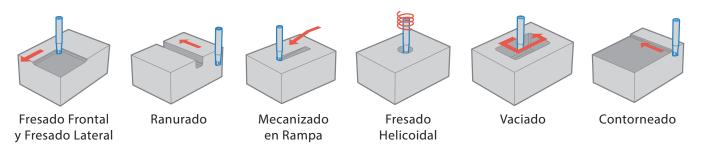
Baja Resistencia y Durabilidad Frente a las Vibraciones para un Mecanizado de Alta Eficiencia

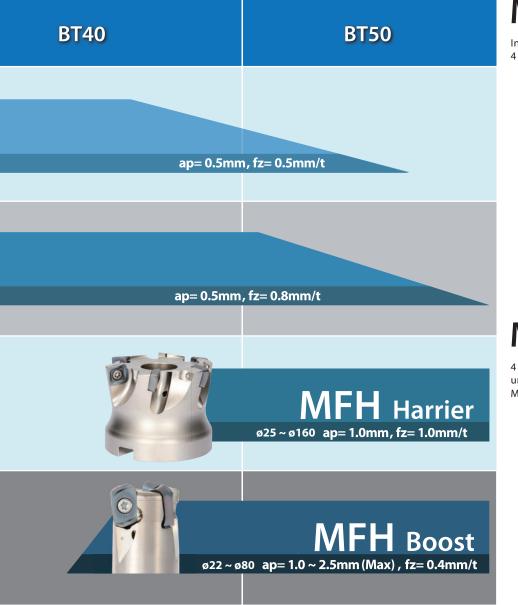
Uso de la MFH

Punto	Tamaño de Uso General (Díam.)	BT30
Reemplaza las Fresas de Mango Sólidas para Reducir los Costos de Mecanizado Molde SKD	10 12	MFH Micro
Orientado a la Fuerza de Corte Piezas Pequeñas Pequeñas FCD/SCM Relacionado con el Semiconductor SUS	20 25	MFH Mini
Orientado a la Fuerza Borde de Corte Placa SS400 Cuadro FCD/FC	50 63	
Vaciado Excelente Acabado de la Superficie Lateral Componente Hidráulico Hierro Fundido	25	

MFH Boost


Fresado de Alto Avance con Mayores Profundidades de Corte Disponibles para una Variedad de Aplicaciones de Mecanizado





Molde SKD 61

Portaherramientas: MFH12-S12-01-3T Inserto: LPGT010210ER-GM PR1535

<Condiciones de Corte>

Vc = 90 m/min $n = 2,400 \, \text{min}^3$ $ap \times ae = 0.3 \times ~7.0 \text{ mm}$ fz = 0.27 mm/t $Vf = 1.930 \, mm/min$ Sin refrigeración

MFH Micro

Eficiencia de Mecanizado

MFH Micro

Q = 4.1 cc/min

Eficiencia de Mecanizado

Competitor A

Q = 3.0 cc/min

Emisiones de CO₂ Cálculo de emisiones de CO2 comparadas con el tiempo de ciclo necesario Emisiones de CO2 Competitor A

 CO_2 3.5 kg-CO₂

2.6 kg-CO2

Tiempo de Ciclo: 1 hora

Tiempo de Ciclo: 44 minutos

Piezas de Mecanizado Industrial SUS 440C MFH Micro

Portaherramientas: MFH16-S16-01-4T Inserto: LPGT010210ER-GM PR1535

<Condiciones de Corte>

Vc = 180 m/min $n = 3,580 \text{ min}^{-1}$ $ap \times ae = 0.4 \times 8 \text{ mm}$ fz = 0.4 mm/tVf = 5,730 mm/minCon refrigeración

Eficiencia de Mecanizado

MFH Micro

Q = 18.3 cc/min

Eficiencia de Mecanizado

Competitor B

Q = 12.2 cc/min

Emisiones de CO₂

Cálculo de emisiones de CO2 comparadas con el tiempo de ciclo necesario para el corte de 732 cc

Competitor B 3.5 kg-CO $^{\scriptscriptstyle 2}$

Tiempo de Ciclo: 1 hora

Tiempo de Ciclo: 40 minutos

Emisiones de CO₂

Máguina Utilizada: BT40

Cuadro SUS304

MFH Mini

Portaherramientas: MFH20-S20-03-4T Inserto: LOGU030310ER-GM PR1525

<Condiciones de Corte>

Vc = 110 m/min $n = 1,750 \text{ min}^{-1}$ $ap \times ae = 0.8 \times 20 \text{ mm}$ fz = 0.5 mm/t Vf = 3,500 mm/minCon refrigeración

Eficiencia de Mecanizado

MFH Mini

Q = 56 cc/min

×2.0

Eficiencia de Mecanizado

Competitor C

Q = 28 cc/min

Cálculo de emisiones de CO2 comparadas con el tiempo de ciclo necesario para el corte de 1.680 cc. Competitor C

CO₂ **5.1** kg-co₂

Tiempo de Ciclo : 1 hora Tiempo de Ciclo : 30 minutos

CASO 4

Piezas de Aviones Ti-6AI-4 V MFH Harrier

Emisiones de CO₂

Emisiones de CO₂

50

Portaherramientas: MFH063R-10-6T-27M Inserto: SOMT100420ER-GM PR1535

<Condiciones de Corte>

Vc = 50 m/min $n = 250 \text{ min}^{-1}$ $ap \times ae = 1.0 \times ~38 \text{ mm}$ fz = 0.3 mm/t Vf = 450 mm/minCon refrigeración (Externa)

Eficiencia de Mecanizado

MFH Harrier

17.1 cc/min

Eficiencia de Mecanizado

Competitor D

Q = 8.3 cc/min

Emisiones de CO₂

Cálculo de emisiones de CO₂ comparadas con el tiempo de ciclo necesario para el corte de 498 cc

Competitor D

1.7 kg-CO₂

Tiempo de Ciclo : 1 hora

Tiempo de Ciclo : 29 minutos

Cabezal SCM

MFH Harrier

Portaherramientas: MFH40-S32-10-4T-250

Inserto: SOMT100420ER-GM PR1525

<Condiciones de Corte>

Vc = 160 m/min $n = 1,270 \text{ min}^{-1}$ $ap \times ae = 0.5 \times 40 \text{ mm}$ fz = 0.98 mm/t Vf = 5,000 mm/minCon refrigeración

Eficiencia de Mecanizado

MFH Harrier

Q = 100 cc/min

Eficiencia de Mecanizado ×1.9

Competitor E

Q = 54 cc/min

Emisiones de CO₂

Cálculo de emisiones de CO_2 comparadas con el tiempo de ciclo necesario para el corte de 3.240 cc

CO₂
5.1 kg-CO₂

MFH • Emisiones de CO₂
46
%

Tiempo de Ciclo : 1 hora

Tiempo de Ciclo: 32 minutos

CASO 6

Piezas de Herramientas de Mecanizado FC300

MFH Harrier

Portaherramientas: MFH100R-14-7T Inserto: SOMT140520-ER-GM PR1525

<Condiciones de Corte>

Vc = 180 m/min n = 570 min⁻¹ ap × ae = 1.5 × 62 mm fz = 1.1 mm/t Vf = 4,390 mm/min Sen refrigeración

Máquina Utilizada : BT50 Promedio de Rendimiento de Mecanizado : 50%

Eficiencia de Mecanizado

MFH Harrier

Q = 408 cc/min

Eficiencia de Mecanizado

Competitor F

Q = 179 cc/min

Emisiones de CO₂

Cálculo de emisiones de CO_2 comparadas con el tiempo de ciclo necesario para el corte de $10.740\,\mathrm{cc}$

CO₂
5.1 kg-CO₂

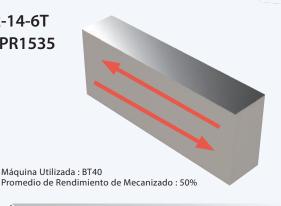
MFH:

Emisiones de CO₂
56
%

5.1 kg-CO₂ 2.2 kg-CO₂

Tiempo de Ciclo : 1 hora

Tiempo de Ciclo : 26 minutos


Piezas de Generador SUS MFH Harrier

Portaherramientas: MFH100R-14-6T Inserto: SOMT140520ER-GM PR1535

<Condiciones de Corte>

Vc = 220 m/min $n = 700 \, \text{min}^{-1}$ $ap \times ae = 1.5 \times 50 \text{ mm}$ fz = 0.3 mm/tVf = 1,260 mm/minSen refrigeración

Eficiencia de Mecanizado

MFH Harrier

Q = 94.5 cc/min

×2.6

Eficiencia de Mecanizado

Competitor G

Q = 36.9 cc/min

Emisiones de CO₂

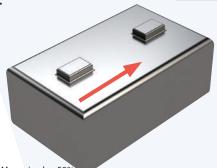
Cálculo de emisiones de CO2 comparadas con el tiempo de ciclo necesario para el corte de 2.214 cc

Competitor G CO_2 3.5 kg-CO₂

Tiempo de Ciclo : 1 hora

Emisiones de CO₂ MFH 1.4 kg:@2

Tiempo de Ciclo : 23 minutos


Piezas de Herramientas de Mecanizado SUS430

Portaherramientas: MFH32-S32-10-2T Inserto: SOMT100420ER-FL PR1535

<Condiciones de Corte>

Vc = 200 m/min $n = 2,000 \, \text{min}^{-1}$ $ap \times ae = 0.5 \sim 1.5 \times 18 \text{ mm}$ $fz = 0.1 \sim 0.35 \text{ mm/t}$ $Vf = 400 \sim 1,400 \text{ mm/min}$

Máguina Utilizada : BT30 Promedio de Rendimiento de Mecanizado : 50%

Eficiencia de Mecanizado

MFH Harrier

Eficiencia de Mecanizado Q = 22.9 cc/min

2.4

Competitor H

Q = 9.6 cc/min

Emisiones de CO₂

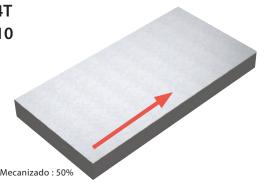
Cálculo de emisiones de CO2 comparadas con el tiempo de ciclo necesario para el corte de 576 cc

Competitor H

Tiempo de Ciclo: 1 hora

Adaptador FCD450

MFH Harrier


Portaherramientas: MFH050R-10-4T Inserto: SOMT100420ER-LD PR1510

<Condiciones de Corte>

Vc = 160 m/min $n = 1,000 \text{min}^{-1}$ $ap \times ae = 0.5 \times 30 \sim 50 \text{ mm}$ fz = 1.0 mm/t

Vf = 4,000 mm/min

Máquina Utilizada : BT30 Promedio de Rendimiento de Mecanizado : 50%

Eficiencia de Mecanizado

MFH Harrier

Q = 100 cc/min

Eficiencia de Mecanizado ×4.2

Competitor I

Q = 24 cc/min

Cálculo de emisiones de CO₂ comparadas con el tiempo de ciclo necesario para el corte de 1.440 cc Competitor I

CO₂ **1.2** kg-CO₂

Tiempo de Ciclo : 1 hora

Tiempo de Ciclo : 14 minutos

MFH Harrier

Molde SKD61

Portaherramientas: MFH32-S32-10-3T Inserto: SOMT100420ER-GM PR1535

<Condiciones de Corte>

Vc = 100 m/min $n = 1,000 \text{ min}^{-1}$ $ap \times ae = 0.5 \times 13 \text{ mm}$ fz = 0.8 mm/tVf = 2,400 mm/min

Máquina Utilizada : BT50 Promedio de Rendimiento de Mecanizado : 50%

Eficiencia de Mecanizado

MFH Harrier

Q = 15.6 cc/min

Eficiencia de Mecanizado

Competitor J

Q = 10.3 cc/min

Emisiones de CO₂

Cálculo de emisiones de CO₂ comparadas con el tiempo de ciclo necesario para el corte de 618 cc

CO₂
5.1 kg-co₂

3.3 kg-CO₂

Tiempo de Ciclo : 1 hora

Tiempo de Ciclo : 40 minutos

Emisiones de CO₂

Equipo para Fabricación de Semiconductores SUS316L

MFH Boost

Abrazadera de

3 Puntos

Portaherramientas: MFH32-S32-04-5T Inserto: LOMU040410ER-GM PR1535

Eficiencia de Mecanizado

×1.6

<Condiciones de Corte>

Vc = 100 m/min $n = 1,000 \text{ min}^{-1}$ $ap \times ae = 1.0 \times 20 \text{ mm}$ fz = 0.6 mm/t

Vf = 3,000 mm/min Sen refrigeración

Máquina Utilizada : BT50 Promedio de Rendimiento de Mecanizado : 50%

E

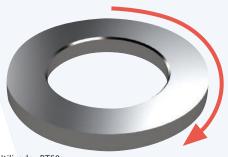
Eficiencia de Mecanizado

MFH Boost

Q = 60.0 cc/min

Competitor K

Q = 37.3 cc/min



Tapa de Cojinete SCM435 MFH Boost

Portaherramientas: MFH080R-04-10T Inserto: LOMU040410ER-GM PR1535

<Condiciones de Corte>

Vc = 160 m/min $n = 630 \text{ min}^{-1}$ $ap \times ae = 1.0 \times 80 \text{ mm}$ fz = 0.70 mm/t Vf = 4,410 mm/minSen refrigeración

Máquina Utilizada : BT50 Promedio de Rendimiento de Mecanizado : 50%

Eficiencia de Mecanizado

MFH Boost

Q = 353 cc/min

x3.1

Eficiencia de Mecanizado

Competitor L

Q = 115 cc/min

Emisiones de CO₂

Cálculo de emisiones de CO₂ comparadas con el tiempo de ciclo necesario para el corte de 6.900 cc

Competitor L

CO₂ **5.1** kg-CO₂

Tiempo de Ciclo : 1 hora

el tiempo de ciclo

MFH

67

67

%

Tiempo de Ciclo : 20 minutos

Cabezal FC300

MFH Boost

Portaherramientas: MFH40-S32-04-5T Inserto: LOMU040410ER-GM PR1510

<Condiciones de Corte>

Vc = 160 m/min $n = 1,270 \text{ min}^{-1}$ $ap \times ae = 2.0 \times 40 \text{ mm}$ fz = 0.25 mm/t $Vf = 1,590 \, mm/min$ Sen refrigeración

Máquina Utilizada : BT50 Promedio de Rendimiento de Mecanizado : 50%

Eficiencia de Mecanizado

MFH Boost

Q = 127.2 cc/min

Eficiencia de Mecanizado ×8.3

Competitor M

Q = 15.3 cc/min

Emisiones de CO₂

Cálculo de emisiones de CO2 comparadas con el tiempo de ciclo necesario para el corte de 918 cc

Competitor M CO_2 **5.1** kg-CO₂

Emisiones de CO₂

(C) Tiempo de Ciclo : 7 minutos Tiempo de Ciclo: 1 hora

Rodillo SCM440

MFH Boost

Portaherramientas: MFH063R-04-7T-M Inserto: LOMU040410ER-GM PR1525

<Condiciones de Corte>

Vc = 160 m/min $n = 810 \text{ min}^{-1}$ $ap \times ae = 1.5 \times 63 \text{ mm}$ fz = 0.3 mm/tVf = 1,700 mm/minSen refrigeración (Aire) Promedio de Rendimiento de Mecanizado : 50%

Eficiencia de Mecanizado

MFH Boost

Q = 160 cc/min

Eficiencia de Mecanizado

Competitor N

 CO_2

Emisiones de CO₂

Cálculo de emisiones de CO2 comparadas con el tiempo de ciclo necesario para el corte de 4.500 cc

Emisiones de CO₂

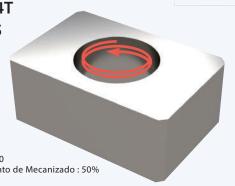
Competitor N

Q = 75 cc/min

Máguina Utilizada: BT50

Cojinete SS400

MFH Boost



Portaherramientas: MFH35-M16-04-4T Inserto: LOMU040410ER-GM PR1535

<Condiciones de Corte>

Vc = 200 m/min $n = 1,820 \, \text{min}^{-1}$ $ap \times ae = 2.0 \times 10 \text{ mm}$ fz = 0.44 mm/tVf = 3,200 mm/minSen refrigeración

Máquina Utilizada : BT50 Promedio de Rendimiento de Mecanizado: 50%

Eficiencia de Mecanizado

MFH Boost

Q = 64 cc/min

×2.5

Eficiencia de Mecanizado

Competitor O

Q = 25.5 cc/min

Emisiones de CO₂ Cálculo de emisiones de CO2 comparadas con el tiempo de ciclo necesario para el corte de 1.530 cc

Competitor O CO_2 5.1 kg-CO₂

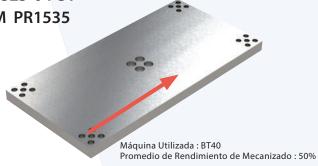
Tiempo de Ciclo : 1 hora

Emissions de CO₂ 60 200 kg:@2

Tiempo de Ciclo : 24 minutos

MFH

Mesa SUS


MFH Boost

Portaherramientas: MFH25-S25-04-3T Inserto: LOMU040410ER-GM PR1535

<Condiciones de Corte>

Vc = 140 m/min $n = 1,780 \, \text{min}^{-1}$ $ap \times ae = 1.0 \times 25 \text{ mm}$ fz = 0.5 mm/tVf = 2,670 mm/minCon refrigeración

Eficiencia de Mecanizado

MFH Boost

Q = 66.8 cc/min

Eficiencia de Mecanizado 2.9

Competitor P

Q = 23.1 cc/min

Emisiones de CO₂

Cálculo de emisiones de CO2 comparadas con el tiempo de ciclo necesario para el corte de 1.386 cc

Competitor P

Tiempo de Ciclo: 1 hora

Emisiones de CO₂ MFH 65 1.2 kg-co2

Tiempo de Ciclo: 21 minutos

Cámara SUS304

MFH Boost

Portaherramientas: MFH25-S25-04-3T Inserto: LOMU040410ER-GM PR1535

<Condiciones de Corte>

Vc = 140 m/min $n = 1,780 \text{ min}^{-1}$ $ap \times ae = 1.5 \times 25 \text{ mm}$ fz = 0.5 mm/tVf = 2,670 mm/min

Promedio de Rendimiento de Mecanizado : 50%

Eficiencia de Mecanizado

MFH Boost

Q = 100 cc/min

Eficiencia de Mecanizado ×6.3

Máquina Utilizada: BT50

Competitor Q

Q = 16 cc/min

Emisiones de CO₂

Cálculo de emisiones de CO2 comparadas con el tiempo de ciclo necesario para el corte de 960 cc

Competitor Q

 CO_2 **5.1** kg-CO₂

Tiempo de Ciclo: 1 hora

Emisiones de CO₂

Tiempo de Ciclo : 10 minutos

Piezas de Mecanizado SKD11 MFH Boost

Portaherramientas: MFH28-S25-04-4T Inserto: LOMU040410ER-GM PR1525

<Condiciones de Corte>

Vc = 120 m/min $n = 1,360 \text{ min}^{-1}$ $ap \times ae = 1.5 \times 15 \text{ mm}$ fz = 0.6 mm/tVf = 3,280 mm/min

Máguina Utilizada: BT50 Promedio de Rendimiento de Mecanizado : 50%

Eficiencia de Mecanizado

Sen refrigeración

MFH Boost

Q = 73.8 cc/min

Eficiencia de Mecanizado

Competitor R

Q = 35.8 cc/min

Emisiones de CO₂

Cálculo de emisiones de CO2 comparadas con el tiempo de ciclo

necesario para el corte de 2.148 cc Competitor R

 CO_2

5.1 kg-CO $_2$

Emisiones de CO₂

Tiempo de Ciclo: 1 hora

Tiempo de Ciclo: 29 minutos

Pieza Hidráulica FCD400

Emisiones de CO₂

Portaherramientas: MFH080R-04-10T Inserto: LOMU040410ER-GM PR1535

Eficiencia de Mecanizado

<Condiciones de Corte>

Vc = 120 m/min $n = 480 \, \text{min}^{-1}$

ap = 1, 1, 0.45 mm (3 Passes)

ae = 80 mmfz = 0.45 mm/t

Vf = 2,160 mm/min

Eficiencia de Mecanizado

MFH Boost

Q = 140 cc/min

×3.0

Competitor S

Q = 46 cc/min

Emisiones de CO₂

Cálculo de emisiones de CO2 comparadas con el tiempo de ciclo necesario para el corte de 2.760 cc

Competitor S CO_2 3.5 kg-CO₂

Tiempo de Ciclo : 20 minutos Tiempo de Ciclo: 1 hora

Cálculos de Emisiones de CO2

X

Consumo de Energía

Consumo de Energía Nominal de la Máquina (kW)

BT30: 5kW BT40: 15kW BT50: 22kW

Promedio de X Rendimiento de Mecanizado **50**%

Establecer el valor promedio* para el uso de la máquina, considerando que el 100% se alcanza cuando el rendimiento de la máquina se lleva al límite.

*Valor Promedio: El modo de procesamiento varía desde el bruto hasta el acabado, y la carga no es siempre constante

Coeficiente de Emisión CO_2 0.463 (kg-CO₂/kWh)

Tiempo de Ciclo (h)

*Coeficiente de emisión de CO2 para el año fiscal 2018 en Japón calculado por la Federación de Empresas de Energía Eléctrica de Japón

https://www.fepc.or.jp/environment/warming/kyouka/index.html

= Emisiones de CO₂ (kg-CO₂)

- *1 Las emisiones de CO2 se estiman en base al coeficiente de emisión de CO2 (0,463 kg-CO2/kWh) anunciado por la Federación de Empresas de Energía Eléctrica de Japón.
- *2 La eficiencia del mecanizado y las emisiones de CO2 se han redondeado al primer decimal.

La más Reciente Adición a la Serie MFH

