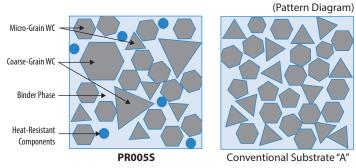
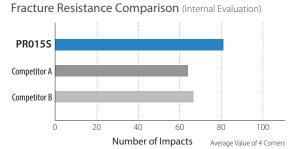
For Machining Heat-Resistant Alloy

PR005S/PR015S

Providing Stable and Consistent Performance while Machining of Heat-Resistant Alloys

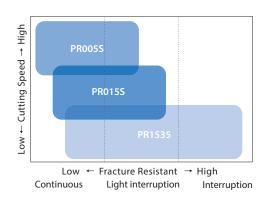
Improved thermal properties help to reduce sudden fracture and decrease edge wear Improved wear resistance with MEGACOAT HARD coating New chipbreaker designs improve machining stability


Finishing to Medium Machining SQ Chipbreaker
For Roughing Applications SX Chipbreaker


PR005S/PR015S

Improved Thermal Properties Help to Reduce Sudden Fracture and Edge Wear

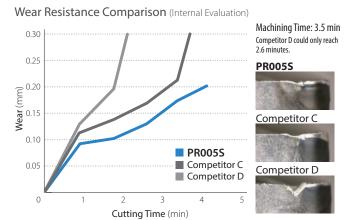
Newly Developed Substrate Helps to Reduce Sudden Fracture and Notch Wear



PR005S: Hard, Wear-resistant Grade for High-speed Machining
PR015S: General Purpose Grade with Excellent Wear Resistance and Stability

Improved thermal conductivity by optimum distribution of WC coarse grains

Resists heat concentration at the cutting edge to promote stable machining

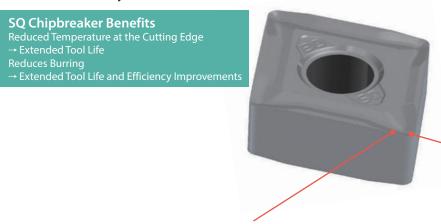

Cutting Conditions: Vc = 25 m/min, ap = 1.0 mm, f = 0.10 mm/rev, Wet CNMG120408 Type Workpiece: Nickel-based Superalloy Cylindrical Workpiece with 1 Flat Face

Improved Wear Resistance with MEGACOAT HARD coating

Coating Film Property (Internal Evaluation)

Excellent wear resistance with high-hardness and resists boundary damage with improved thermal properties

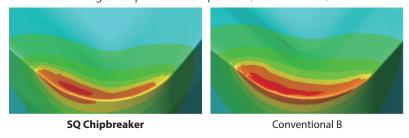
Cutting Conditions: Vc=60 m/min, ap=1.0 mm, f=0.20 mm/rev, Wet, CNMG120408 Type Workpiece: Nickel-based Superalloy



New Chipbreaker Designs Improve Machining Stability

Finishing to Medium Machining SQ Chipbreaker

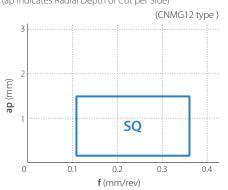
Double-sided 4-Corner Design


Extended Tool Life and Improved Efficiency for Mid-range to Finishing Applications in Heat-Resistant Alloys

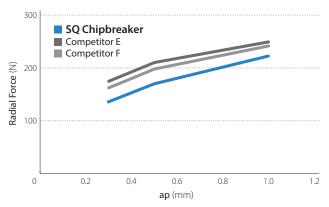
Special Axial Face Design Decreases Cutting Edge Temperature Optimal Design Achieved with Simulation Technology

Slant Cutting EdgeInclined in (-) Direction
Effective for Burr Suppression and Reducing Notching

Simulation of Edge-Temperature Comparison (Internal Evaluation)

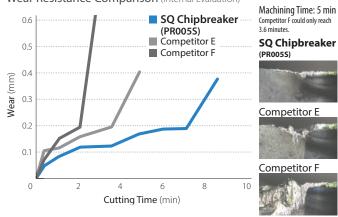


Cutting Conditions: Vc = 40 m/min, ap = 1.0 mm, f = 0.15 mm/rev, CNMG120408 Type, Dry Workpiece: Nickel-based Superalloy


The newly developed chipbreaker reduces temperature at the cutting edge, thereby improving tool life and machining efficiency in semi-finishing applications

Applicable Chipbreaker Range

(ap Indicates Radial Depth of Cut per Side)



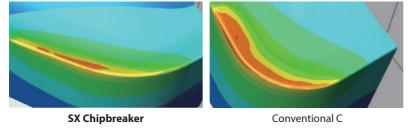
Cutting Force Comparison (Radial Force) (Internal Evaluation)

Cutting Conditions: Vc = 40 m/min, f = 0.15 mm/rev, Wet, CNMG120408 Type Workpiece: Nickel-based Superalloy

Wear Resistance Comparison (Internal Evaluation)

 $Cutting\ Conditions: Vc = 40\ m/min, ap = 1.0\ mm, f = 0.20\ mm/rev, Wet, CNMG120408\ Type\ Workpiece: Nickel-based\ Superalloy$

For Roughing SX Chipbreaker

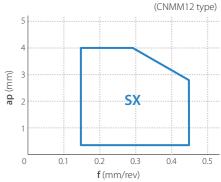

Improved Efficiency for Roughing Applications in Heat-Resistant Alloys

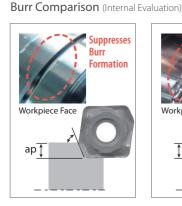
SX Chipbreaker Benefits Decreased Edge Temperature → Longer Tool Life Suppresses Burr Formation → Greater Depths of Cut Decreased Radial Forces → Resists Edge Build-up and Improves Efficiency Rake Design Decreases Temperature at the Cutting Edge Optimal design achieved with CNC simulation technology Unique Cutting Edge Design (Handed Insert) - 60 Degree Lead Angle (when Installed in the Toolholder) - 12 Degree Rake Angle

 Can be installed in standard Kyocera 80° (C type) toolholders by changing to corresponding SX shim

• Single-sided Handed Insert

Simulation of Edge-Temperature Comparison (Internal Evaluation)



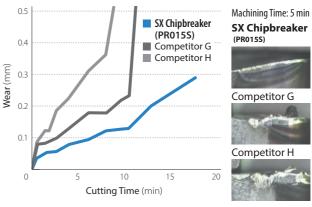

 $\label{eq:conditions: Vc = 40 m/min, ap = 2.0 mm, f = 0.25 mm/rev, Dry CNMM1204XL-SX, CNMG120412 Type Workpiece: Nickel-based Superalloy$


The SX Chipbreaker provides longer tool life and improved efficiency with its unique cutting edge and rake angle design

Applicable Chipbreaker Range

(ap Indicates Radial Depth of Cut per Side)

SX Chipbreaker

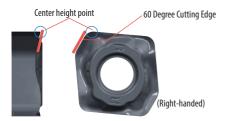

Conventional D

 $\label{eq:conditions: Vc = 40 m/min, ap = 2.0 mm, f = 0.25 mm/rev, Wet CNMM1204XL-SX, CNMG120412 Type \\ After Machining 9.4 min. Workpiece: Nickel-based Superalloy$

Even in larger depths of cut, the SX chipbreaker is able to suppress burr build-up

Increased D.O.C capability and reduced notch wear combine to provide greater machining efficiency

Wear Resistance Comparison (Internal Evaluation)


 $\label{eq:cutting} Conditions: Vc = 40 \text{ m/min, ap} = 2.0 \text{ mm, } f = 0.25 \text{ mm/rev, Wet} \\ CNMM1204XL-SX, CNMG120412 Type & Workpiece: Nickel-based Superalloy \\ \label{eq:cutting} Volume 1 - 10.00 \text{ mm/rev, Wet} \\ Volume 2 - 10.00 \text{ mm/rev, Wet} \\ Volume 3 - 10.00 \text{ mm/rev, Wet} \\ Volum$

SX Chipbreaker and PR015S resist notching, thereby improving tool life

Caution when Using SX Chipbreaker

1. Cutting Edge Height

The center of the cutting edge height of the nose is slanted by 60 degrees based on circled portions in image below

2. Recommended D.O.C.

Recommended depth of cut is no greater than the 60° lead angle; however, larger depths of cut are possible

Description	Recommended D.O.C. External Turning (mm)	Max. D.O.C. Facing (mm)
CNMM1204X R/L-SX	0.5 - 2.0 - 4.0	2.0
CNMM1606X R/L-SX	0.5 - 2.5 - 4.5	2.0
CNMM1906X R/L-SX	0.5 - 3.0 - 5.0	2.5

3. Applicable Toolholder

The SX chipbreaker insert requires a different shim than standard inserts No additional toolholder modifications are necessary when using the applicable Kyocera holders

Insert Description	Applicable Toolholder (Kyocera)	Standard Shim	Shim for SX Chipbreaker	
	DCLN R/L2020K-12 DCLN R/L2525M-12	DC-44	DC-44-C	
CNMM1204X ^R /L-SX	PCLN ^R /L2020H-12 PCLN ^R /L2020K-12 PCLN ^R /L2525M-12 PCLN ^R /L3225P-12	LC-42N	LC-42N-C	
CNMM1606X R/L-SX	PCLN ^R /L2525M-16 PCLN ^R /L3232P-16	LC-53N	LC-53N-C	
CNMM1906X R/L-SX	PCLN ^R /L3232P-19	LC-63	LC-63-C	

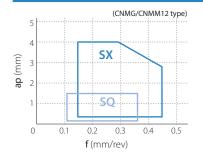
Boring is not recommended

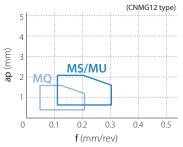
4. Unmachined portion varies with insert size

Unmachined portion is reflected below

Description	Amount Uncut (mm)			
Description	Х	Z		
CNMM1204X R/L-SX	4.1	2.9		
CNMM1606X R/L-SX	4.8	3.3		
CNMM1906X R/L-SX	5.4	3.6		

5. Facing


Facing is possible, but turning is recommended Cutting edge may drop below center in facing operations (Boss remains at the center of the workpiece)


Description	Run-out Amount when Facing (mm)
CNMM1204X R/L-SX	0.75
CNMM1606X R/L-SX	0.85
CNMM1906X R/L-SX	1.05

Recommended Cutting Conditions

Workpiece Cutting Rang		Application	Recommended	Recommended	Min Recommendation - Max.			
Workpiece	Cuttilly hallye	Аррисации	Chipbreaker	Grade	Vc (m/min)	ap (mm)	f (mm/rev)	
Heat-Resistant Alloys Medium Roughing	Einiching	Continuous	MQ	PR005S	30 – 55 – 90	0.2 - 0.3 - 1.0	0.05 - 0.08 - 0.15	
	riilisiiliig	Interruption	MQ	PR015S	25 – 45 – 70	0.2 - 0.5 - 1.0	0.05 - 0.1 - 0.2	
	Medium	Continuous	MU	PR005S	30 - 55 - 90	0.5 - 1.0 - 2.0	0.1 – 0.15 – 0.3	
		Interruption		PR015S	25 – 45 – 70	0.5 - 1.0 - 2.0	0.1 – 0.15 – 0.3	
		Continuous	MS	PR005S	30 - 55 - 90	0.5 - 1.0 - 2.0	0.1 – 0.15 – 0.3	
		Interruption		PR015S	25 – 45 – 70	0.5 - 1.0 - 2.0	0.1 – 0.15 – 0.3	
		Continuous	SQ	PR005S	30 – 55 – 90	0.3 – 0.5 – 1.5	0.1 – 0.17 – 0.35	
		Interruption		PR015S	25 – 45 – 70	0.3 – 0.5 – 1.5	0.1 – 0.17 – 0.35	
	Roughing	Continuous	SX	PR005S	30 – 55 – 90	0.5 - 2.0 - 4.0	0.15 - 0.3 - 0.45	
		Interruption	3/	PR015S	25 – 45 – 70	0.5 - 2.0 - 4.0	0.15 - 0.3 - 0.45	

Applicable Chipbreaker Range (ap Indicates Radial Depth of Cut per Side)

Stock Items

	Dimensions (mm)				S	S	
Shape Handed Insert shows Right-hand	Description	I.C.	Thickness	Hole	Corner-R (rε)	PR005S	PR0155
	CNMG 120404SQ 120408SQ 120412SQ	12.70	4.76	5.16	0.4 0.8 1.2	•	•
	CNMG 160612SQ 160616SQ	15.875	6.35	6.35	1.2 1.6	•	•
Finishing-Medium	CNMG 190612SQ 190616SQ	19.05	6.35	7.94	1.2 1.6	•	•
Finishing-Medium	CNMG 120404MQ 120408MQ	12.70	4.76	5.16	0.4 0.8	•	•
Medium-Roughing	CNMG 120404MS 120408MS 120412MS 120416MS	12.70	4.76	5.16	0.4 0.8 1.2 1.6	•	•
	CNMG 120404MU 120408MU 120412MU	12.70	4.76	5.16	0.4 0.8 1.2	•	•
	CNMG 160608MU 160612MU 160616MU	15.875	6.35	6.35	0.8 1.2 1.6	•	•
Medium-Roughing	CNMG 190612MU 190616MU	19.05	6.35	7.94	1.2 1.6	•	•
	CNMM 1204X R/L-SX	12.70	4.42	5.16	_	•	•
	CNMM 1606X R/L-SX	15.875	5.96	6.35	-	•	•
Roughing	CNMM 1906X R/L-SX	19.05	5.93	7.94	-	•	•
	DNMG 150404SQ 150408SQ 150412SQ	12.70	4.76	5.16	0.4 0.8 1.2	•	•
Finishing-Medium	DNMG 150604SQ 150608SQ 150612SQ	12.70	6.35	5.16	0.4 0.8 1.2	•	•
603	DNMG 150404MQ 150408MQ	12.70	4.76	5.16	0.4 0.8	•	•
Finishing-Medium	DNMG 150604MQ 150608MQ	12.70	6.35	5.16	0.4 0.8	•	•
600000	DNMG 150404MS 150408MS 150412MS	12.70	4.76	5.16	0.4 0.8 1.2	•	•
Medium-Roughing	DNMG 150604MS 150608MS 150612MS	12.70	6.35	5.16	0.4 0.8 1.2	•	•
	DNMG 150404MU 150408MU	12.70	4.76	5.16	0.4 0.8	•	•
Medium-Roughing	DNMG 150604MU 150608MU	12.70	6.35	5.16	0.4 0.8	•	•

Finishing-Medium	SNMG 120404MQ 120408MQ	12.70	4.76	5.16	0.4 0.8	•	•
Medium-Roughing	SNMG 120404MS 120408MS 120412MS 120416MS	12.70	4.76	5.16	0.4 0.8 1.2 1.6	• • • •	••••
Medium-Roughing	SNMG 190612MU 190616MU	19.05	6.35	7.94	1.2 1.6	•	•
Finishing-Medium	TNMG 160404MQ 160408MQ	9.525	4.76	3.81	0.4 0.8	•	•
Medium-Roughing	TNMG 160404MS 160408MS 160412MS	9.525	4.76	3.81	0.4 0.8 1.2	•	•
Medium-Roughing	TNMG 160404MU 160408MU	9.525	4.76	3.81	0.4 0.8	•	•
Finishing-Medium	VNMG 160404MQ 160408MQ	9.525	4.76	3.81	0.4 0.8	•	•
Medium-Roughing	VNMG 160404MS 160408MS 160412MS	9.525	4.76	3.81	0.4 0.8 1.2	•	•
Medium-Roughing	VNMG 160404MU 160408MU	9.525	4.76	3.81	0.4 0.8	•	•
Finishing-Medium	WNMG080404MQ 080408MQ	12.70	4.76	5.16	0.4 0.8	•	•
Medium-Roughing	WNMG080404MS 080408MS 080412MS	12.70	4.76	5.16	0.4 0.8 1.2	•	•
Medium-Roughing	WNMG080404MU 080408MU	12.70	4.76	5.16	0.4 0.8	•	•

Description

Shape

VO CV

Dimensions (mm)

Hole

I.C.

PR005S PR015S

Corner-R (rɛ)

CNMM...XR/L-SX inserts are single-sided with 2 cutting edges

●: Standard Stock