

Negative Wiper Insert

WE/WF Chipbreaker

High Productivity with Newly Designed Wiper Edge Geometry

Finishing-Medium

WE Chipbreaker (For High Maching Efficiency)

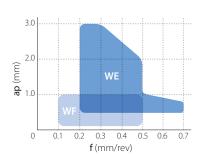
High productivity by reducing cutting time during higher feed machining

Stable chip control in a wide range of applications

Finishing

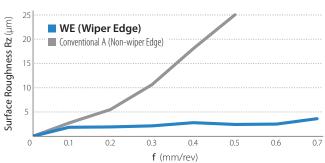
WF Chipbreaker (For Excellent Surface Roughness)

High productivity with smooth chip control in finishing operations


Excellent surface roughness by controlling adhesion

Wiper Insert (Finishing-Medium)

WE Chipbreaker


High productivity by reducing cutting time during higher feed machining Stable chip control in a wide range of applications

1

3 Times the Feed Rate of Standard Inserts with Excellent Surface Roughness

Surface Finish Comparison (In-house Evaluation)

Cutting Conditions: Vc = 250m/min, ap = 0.3 mm, f = 0.1 - 0.7 mm/rev, Wet CNMG120408 Type Workpiece: SCM435

Chipbreaker Design
Stable chip control in a wide range of applications

Tough edge design
Prevents chip entanglement

Wiper Edge Geometry
Excellent surface roughness during higher feed rates

Chipbreaker Cross Section
Available for a wide range of machining operations utilizing various angled steps

2

Reduce the Number of Machining Passes from 2 Passes to 1 Pass

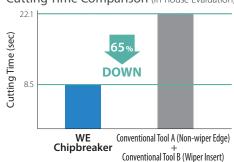
Conventional Machining Process Cutting Time (2 Passes): 22.1 sec

Pass 1 : Conventional Tool (Non-wiper Insert)

Vc = 200 m/min, ap = 1.5 mm, f = 0.25 mm/rev, Wet, CNMG120408 Type

Pass 2: Conventional Tool (Wiper Insert)

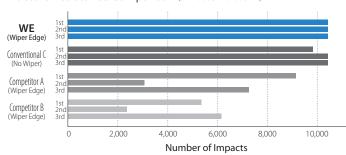
Vic = 200 m/min, ap = 0.5 mm, f = 0.4 mm/rev, Wet, CNMG120408 Type Workpiece: SCM415 (Diameter of Material ø 40×150 L, Cutting Length 100 mm)



Recommended Machining Process Cutting Time (1 Pass): 8.5 sec

Pass 1: WE Chipbreaker (Wiper Insert)

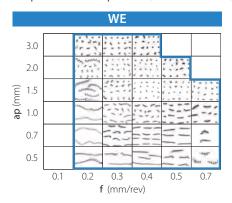
Vc = 200 m/min, ap = 2.0 mm, f = 0.4 mm/rev, Wet, CNMG120408 Type Workpiece: SCM415 (Diameter of Material ø 40 × 150 L, Cutting Length 100 mm)

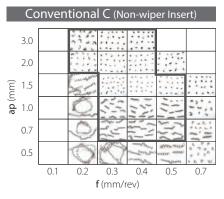

Cutting Time Comparison (In-house Evaluation)

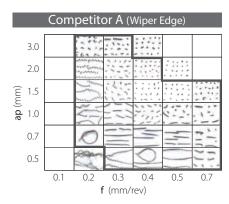
3

Stable Cutting at 0.7mm/rev Feed Rate

Fracture Resistance Comparison (In-house Evaluation)

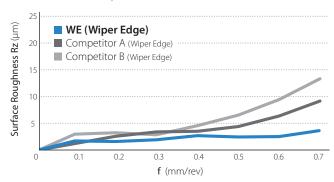



Cutting Conditions: Vc = 150 m/min, ap = 1.0 mm, f = 0.7 mm/rev, Wet CNMG120408 Type (Insert Grade: P25 Grade), Fracture Resistance Comparison (3 Tests) Workpiece: SCM440(4 Grooves in Workpiece)


4

Stable Chip Control in a Wide Range of Applications

Chip Control Comparison (In-house Evaluation)

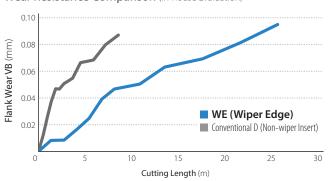

Cutting Conditions: Vc= 200 m/min, ap = 0.5 - 3.0 mm, f = 0.1 - 0.7 mm/rev, Wet, CNMG120408 Type Workpiece: SCM415

5

Excellent Surface Roughness

Excellent Surface Roughness During High Feed Machining

Surface Finish Comparison (In-house Evaluation)


Cutting Conditions: Vc = 250 m/min, ap = 0.3 mm, f = 0.1 - 0.7 mm/rev, Wet CNMG120408 Type Workpiece: SCM435

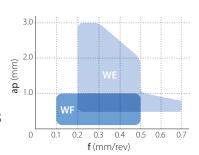
6

Long Tool Life

WE chipbreaker reduces cutting time by increasing feed rate and extending tool life by 3 times

Wear Resistance Comparison (In-house Evaluation)

Total Cutting Length Comparision (In-house Evaluation)



Cutting Conditions: Vc = 250 m/min ap = 0.5 mm f = 0.1 mm/rev (No Wiper) f = 0.3 mm/rev(Wiper Edge) Wet, CNMG120408 Type (Insert Grade: P25 Grade) Workpiece: SCM435

Wiper Insert (Finishing)

WF Chipbreaker

Smooth chip control improves cutting performance during finishing operations Excellent surface roughness by controlling adhesion

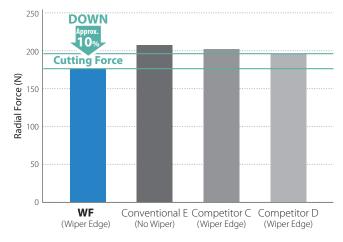
1

Excellent Chip Control

WF chipbreaker provides excellent chip control during high feed machining

Chip Control Comparison (In-house Evaluation)

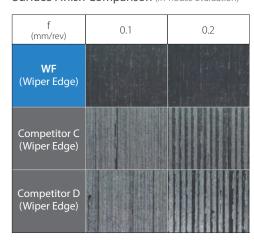
f (mm/rev)	0.1	0.2	0.3	0.4	0.5
WF Chipbreaker (Wiper Edge)			1111		Construction of the second of
Conventional E (No Wiper)			***************************************		Jana Jana
Competitor C (Wiper Edge)		ation of the particular particula	الرياسة المراد المر المراد المراد ا	monthly wedge way	Sur and
Competitor D (Wiper Edge)		0)		formation of the same of the s


Cutting Conditions:Vc = 200 m/min, ap = 0.5 mm, f = 0.1 - 0.5 mm/rev, Wet CNMG120408 Type Workpiece: SCM415

2

Excellent Surface Roughness

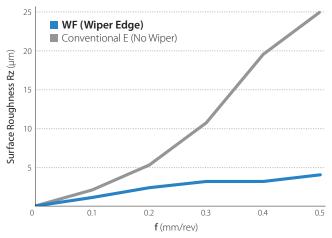
Prevents tool Deflection by Reducing Radial Forces


Cutting Force Comparison (In-house Evaluation)

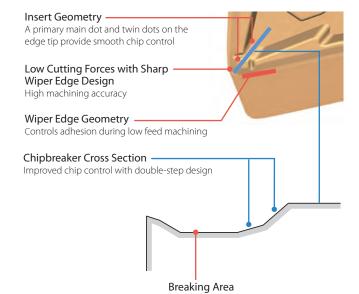
Cutting Conditions: Vc = 200 m/min, ap = 0.5 mm, f = 0.3 mm/rev, Wet CNMG120408 Type Workpiece: SCM415

WF chipbreaker reduces tearing of the finished surface by controlling adhesion with the newly designed wiper edge

Surface Finish Comparison (In-house Evaluation)

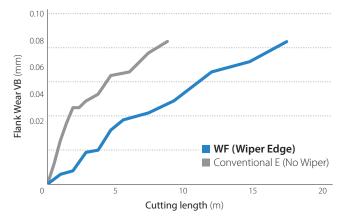


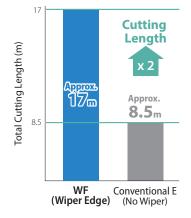
Cutting Conditions: Vc = 200 m/min, ap = 0.3 mm, f = 0.1 - 0.2 mm/rev, Wet CNMG120408 Type Workpiece: SCM415


3

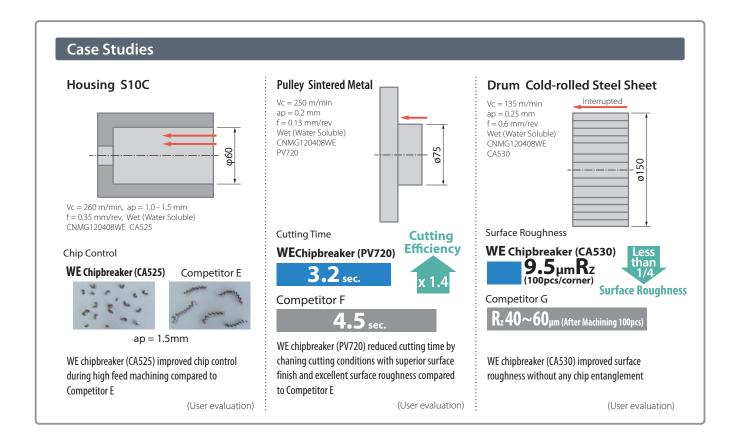
Excellent Surface Roughness During 2 Times Higher Feed Rate Machining (Cutting Time 1/2)

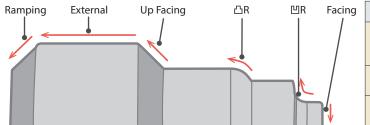
Cutting Conditions: Vc = 250 m/min, ap = 0.3 mm, f = 0.1 - 0.5 mm/rev, Wet CNMG120408 Type Workpiece: SCM435



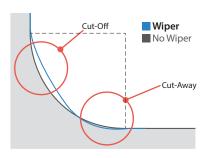

Long Tool Life

WF chipbreaker reduces cutting time by increasing feed fate and extends tool life by 2 times


Wear Resistance Comparison (In-house Evaluation)


Total Cutting Length Comparision (In-house Evaluation)

Cutting Conditions: Vc = 250 m/min ap = 0.5 mm f = 0.1 mm/rev (No Wiper) f = 0.2 mm/rev (WF Chipbreaker) Wet, CNMG120408 Type Insert Grade: P25 Grade Workpiece: SCM435


Caution (Finished Edge Line)

Application Caution For D type and T type inserts, expected perfor-External• mance may vary depending on toolholders Facing Please check the applicable toolholder For D type and T type inserts, Z-direction **Up Facing** Ramping program corrections are required Do not use wiper insert if a precise R shape is ©R•凸R needed

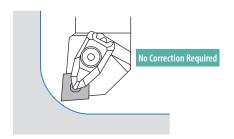
Radius Cutting (Differences from Non-wiper Insert)

Cut-off and cut-away will occur between radius machining and straight machining There is a limit to the use of a wiper insert when there is an R parameter symbol Please refer to the list on the right for finished dimensions

D Type Insert	
Nominal Corner R	Finished Dime
0.4	R0.4 ^{+0.4} ₋₀

Nominal Corner R	Finished Dimension					
0.4	R0.4 ^{+0.4} ₋₀					
0.8	R0.8 ±0.2					
1.2	R1.2 ^{+0.3} _{-0.4}					

T Type Insert


l	Jnit:	mn	

Unit: mm

,	Unit: mm
Nominal Corner R	Finished Dimension
0.4	R0.4 ^{+0.4}
0.8	R0.8 ±0.2
1.2	R1.2 ⁺⁰ _{-0.4}

There is no limit for using CNMG/WNMG type inserts

CNMG/WNMG type inserts meet ISO standard

Cutting Edge Offsets of Negative Wiper Insert

	Cutting Edge Offsets (mm)											
	0404WF 0604WF		0408WF 0608WF	DNMX15								
X-direction	Z-direction	X-direction	Z-direction	X-direction	Z-direction							
0.24	0.02	0.14	0.01	0.11	0.01							

Cutting Edge Offsets (mm)											
TNMX16	0404WF	TNMX16	0408WF	TNMX160412WF							
X-direction	Z-direction	X-direction	Z-direction	X-direction	Z-direction						
0.24	0.01	0.16	0.00	0.11	0.00						

For D type and T type inserts, cutting edge offsets are required Wiper Edge Geometry -- Standard Insert Edge Line

For D type and T type inserts, program corrections are required for up facing

Z-direction Cutting Edge Offsets Z-direction Cutting Edge Offsets

DNMX1504 Type Corner-R(rs)

Z-direction Cutting Edge Offsets (mm)

Corner-R(rε)		Ramping Angle θ											
(mm)	0°	5°	10°	15°	20°	25°							
0.4	0.00	- 0.34	- 0.35	- 0.36	- 0.36	- 0.36							
0.8	0.00	- 0.26	- 0.26	- 0.25	- 0.24	- 0.22							
1.2	0.00	- 0.15	- 0.17	- 0.16	- 0.15	- 0.15							

Z-direction Cutting Edge Offsets (mm)

Corner-R(re)		Up Facing Angle θ																	
(mm)	0°	5°	10°	15°	20°	25°	30°	35°	40°	45°	50°	55°	60°	65°	70°	75°	80°	85°	90°
0.4	0.00	- 0.02	- 0.03	- 0.03	- 0.04	- 0.05	- 0.06	- 0.07	- 0.08	- 0.09	- 0.10	- 0.11	- 0.12	- 0.10	- 0.08	- 0.06	- 0.04	- 0.02	0.00
0.8	0.00	0.13	0.12	0.11	0.09	0.07	0.05	0.04	0.02	0.00	- 0.02	- 0.05	- 0.07	- 0.06	- 0.04	- 0.02	- 0.01	- 0.01	0.00
1.2	0.00	0.36	0.34	0.31	0.27	0.24	0.20	0.16	0.13	0.09	0.05	0.00	_ 0.04	- 0.04	_0.03	-0.02	_ 0.01	- 0.01	0.00

TNMX1604 Type

Z-direction Cutting Edge Offsets (mm)

Corner-R(rε)		Ramping Angle θ											
(mm)	0°	5°	10°	15°	20°	25°							
0.4	0.00												
0.8	0.00												
1.2	0.00												

Do not use TNMX1604 type insert for ramping

Z-direction Cutting Edge Offsets (mm)

Corner-R(re)		Up Facing Angle θ																	
(mm)	0°	5°	10°	15°	20°	25°	30°	35°	40°	45°	50°	55°	60°	65°	70°	75°	80°	85°	90°
0.4	0.00	- 0.06	- 0.05	- 0.05	- 0.06	- 0.07	- 0.08	- 0.08	- 0.09	- 0.10	- 0.11	- 0.12	- 0.13	- 0.12	- 0.10	- 0.07	- 0.05	- 0.02	0.00
0.8	0.00	0.11	0.11	0.10	0.08	0.06	0.04	0.02	0.00	- 0.02	- 0.04	- 0.06	- 0.08	- 0.08	- 0.06	- 0.04	- 0.02	- 0.01	0.00
1.2	0.00	0.34	0.32	0.29	0.25	0.22	0.19	0.15	0.14	0.08	0.04	0.00	- 0.05	- 0.05	- 0.03	- 0.01	0.00	0.00	0.00

Applicable Toolholders for Negative Wiper Inserts

Insert Installation

Insert	Cutting Edge Angle
CNMG1204 Type	95°
WNMG0804 Type	95°
DNMX1504/1506 Type	93°
TNMX1604 Type	91°

List of Applicable Toolholders

Insert	Application	Description	Applicable	
	External	PCLN		
	Turning	DCLN		
CNMG1204Type		S-PCLN	Yes	
	Boring	ing A-DCLN		
	HA-PCLN12			
	F	PWLN		
	External Turning	DWLN		
WNMC0904 Tupo	ranning	WWLN	Yes	
WNMG0804 Type		S-PWLN	162	
	Boring	A-DWLN		
		S-WWLN08-E		

List of Applicable Toolholders

Insert	Application	Description	Applicable
		PDJN	Yes
	External	DDJN	res
	Turning	PDHN	No
		DDHN	INO
DNMX1504/1506 Type		S-PDUN15	
		A-DDUN	Yes
	Boring	HA-PDUN15	163
		S-PDZN15	
		S-PDQN15	No
		PTGN	
		DTGN	Yes
	External	PTFN	
	Turning	WTJN-N	See Caution
TNMX1604 Type		WTKN-N	No
		WTEN-N	140
		A-DTFN	Yes
	Boring	S-PTUN	See Caution
		HA-PTFN16	See Caution

Wiper Effect is Limited

WE Chipbreaker

Chana	Description	Dimensions (mm)	CERMET		MEGACOAT NANO CERMET		CVD Coated Carbide			
Shape	Description	Corner- R(rɛ)	TN610	TN620	PV710	PV720	CA510	CA515	CA525	CA530
	CNMG 120404WE 120408WE 120412WE	0.4 0.8 1.2	•	• • •	•	• • •	•	•	• •	•
	WNMG 080404WE 080408WE 080412WE	0.4 0.8 1.2	•	• • •	•	• • •	•	•	•	•

: Standard Stock

Dimensions

Difficitions			(mm)
Description	I.C.	Thickness	Hole
CNMG1204	12.70	4.76	5.16
DNMX1504	12.70	4.76	5.16
DNMX1506	12.70	6.35	5.10
TNMX1604	9.525	4.76	3.81
WNMG0804	12.70	4.76	5.16

WF Chipbreaker

Chana	Description		Dimensions (mm)	CERMET		MEGACOAT NANO CERMET CVD Coated Carbide			ed		
Shape	Des	Cription	Corner- R(rɛ)	TN610	TN620	PV710	PV720	CA510	CA515	CA525	CA530
	CNMG	120404WF 120408WF	0.4 0.8	•	•	•	•	•	•	•	•
	DNMX	150404WF 150408WF 150412WF	0.4 0.8 1.2	•	•	•	•	• • •	•	•	•
	DNMX	150604WF 150608WF 150612WF	0.4 0.8 1.2	• • •	•	•	•	• • •	•	• • •	• •
	TNMX	160404WF 160408WF 160412WF	0.4 0.8 1.2	• • •	•	•	• • •	• • •	•	• • •	• • •
	WNMG	080404WF 080408WF	0.4 0.8	•	•	•	•	•	•	•	•

●: Standard Stock

Recommended Cutting Conditions

WE Chipbreaker

	Insert	Min F	- Max.			
Workpiece	Grade	Cutting Speed Vc (m/min)	ap (mm)	f (mm/rev)		
	TN610	120 - 220 - 340				
	TN620	100 - 200 - 300				
	PV710	130 - 280 - 360				
Carbon Steel	PV720	130 - 250 - 340	0.5 - 0.7 - 3.0	0.2 - 0.45 - 0.7		
Alloy Steel	CA510	190 - 280 - 360	0.5 - 0.7 - 5.0	0.2 - 0.45 - 0.7		
	CA515	160 - 260 - 340				
	CA525	150 - 240 - 320				
	CA530 130 - 20	130 - 200 - 270				

WF Chipbreaker

	Insert	Min f	- Max.	
Workpiece	Grade	Cutting Speed Vc (m/min)	ap (mm)	f (mm/rev)
	TN610	120 - 220 - 340		
	TN620	100 - 200 - 300		
	PV710	130 - 280 - 360	0.1 - 0.5 - 1.0	
Carbon Steel	PV720	130 - 250 - 340		0.1 - 0.3 - 0.5
Alloy Steel	CA510	190 - 280 - 360	0.1 - 0.5 - 1.0	0.1 - 0.3 - 0.5
	CA515	160 - 260 - 340		
	CA525	150 - 240 - 320		
	CA530	130 - 200 - 270		

Positive Wiper Insert

WPChipbreaker

Excellent surface roughness and smooth chip control during high feed machining High quality surface finish with no galling High machining accuracy with low cutting forces

