THE NEW VALUE FRONTIER

Positive Wiper Insert | WP Chipbreaker

Positive Wiper Insert

WP Chipbreaker

High Productivity with Newly Designed Wiper Edge Geometry

Excellent surface roughness and smooth chip control during high feed machining High quality surface finish with no galling High machining accuracy with low cutting forces

Insert Grade and Corner Radius Lineup Expansion Fewer Programming Corrections with New Handed Insert Designs

WP Chipbreaker

High Productivity with Newly Designed Wiper Edge Geometry Handed / Non-Handed Insert Designs Available Depending on Application

Stable Chip Control in a Wide Range of Feed Rates

Smooth chip control from low feed to high feed rate

Chip Control Comparison (Internal Evaluation)

)

Cutting Conditions: Vc = 200 m/min, ap = 0.3 mm, Wet Toolholder: A20R-SCLCR09-22AE Insert: CCMT09T304 Type Workpiece: SCM415

3 Excellent Surface Finish

WP chipbreaker offers excellent surface roughness across a wide range of cutting conditions

Surface Finish Comparison (Internal Evaluation)

Cutting Conditions: Vc = 150 m/min, ap = 0.5 mm, Wet Toolholder: A20R-SCLCR09-22AE Insert: CCMT09T304 Type Workpiece: SCM415

4 Reduces Surface Finish Galling

WP chipbreaker reduces tearing of the finished surface by controlling adhesion with the newly designed wiper edge

 $\label{eq:cutting conditions: Vc = 80 m/min, ap = 0.73 mm, f = 0.05 mm/rev, Wet Insert: CCMT09T304 Type Workpiece: STKM13A$

5 High Machining Accuracy with Low Radial Forces

Prevents tool deflection by reducing radial forces

Cutting Force Comparison (Internal Evaluation)

Cutting Conditions: Vc = 200 m/min, ap = 0.3 mm, Wet Toolholder: A20R-SCLCR09-22AE Insert: CCMT09T304 Type Workpiece: SCM415

6 Handed / Non-Handed Insert Designs Available Depending on Application (DCMX···/TPMX···)

Non-Handed Insert for General Purpose Wiper (Both Sides)

Non-Handed Insert Design

Proper Use of Non-Handed and Handed Inserts

Non-Handed Insert Design

Using Non-Handed Wiper Insert

· Programming Correction Necessary at 3 Points

· For Machining with Less Corner-R Accuracy Required

Handed Insert (Drawing Shows Left-hand)

Handed Insert Design

Using Handed Wiper Insert

 Programming Correction Only Necessary for Plunging

· Accurate Corner-R Available

Similar Use as a Non-Wiper Insert with Fewer Programming Corrections

* Cutting-Edge Position is Different with Non-Wiper Insert Please Adjust Cutting-Edge Position

Caution (Finished Edge Line)

Non-Handed Insert Design

Radius Cutting [Differences from Non-wiper Insert]

Cut-off and cut-away will occur between radius machining and straight machining

There is a limit to the use of a wiper insert when there is an R parameter symbol

Please refer to the list on the right for finished dimensions

There is no limit for using CCMT type inserts (CCMT type inserts meet ISO standard)

Handed Insert Design

Cut-Off	Wiper Insert
	Cut-Away

D Type, T Type	Unit: mm
Nominal Corner R	Finished Dimension
0.2	R0.2 ^{+0.3} 0.1
0.4	R0.4 ⁺ 0.2
0.8	R0.8 ⁺ 0.5

Application	Caution
Boring	For D type and TP type inserts, expected performance may vary depending on toolholders Please check the applicable toolholder
Ramping	For D type and TP type inserts, Z-direction program corrections are required
凹 R/凸 R	Same as Non-Wiper Insert
Up Facing	Same as Non-Wiper Insert
Facing	Same as Non-Wiper Insert

Stock Items

			P Carbon steel / Alloy steel				•	•		•	0		۲	#	•	Ċ
		I	N	Stai	nless Ste	el									U	¥
Shano	Description		Din	nensions (mm)		Cer	Cermet MEGACOAT NANO Cermet			CV	CVD Coated Carbide			MEGACOAT NANO	MEGACOAT
Jughe	Description	I.C.	Thickness	Hole	Corner-R (rε)	Relief Angle	TN610	TN620	PV710	PV720	CA510	CA515	CA525	CA530	PR1425	PR1225
	CCMT 060202WP 060204WP 060208WP	6.35	2.38	2.8	0.2 0.4 0.8	7°	•	•	•	•••	•	•	•	•	•••	•
	CCMT 09T302WP 09T304WP 09T308WP	9.525	3.97	4.4	0.2 0.4 0.8	7°	•	•	•	•	•	•	•	•	•	•
	DCMX 070202WP 070204WP 070208WP	6.35	2.38	2.8	0.2 0.4 0.8	7°	•	•	•	•	•	•	•	•	•	•
	DCMX 11T302WP 11T304WP 11T308WP	9.525	3.97	4.4	0.2 0.4 0.8	7°	•••	•	•	•	•••	•	•	•	•	•
	DCMX 070204 R/L-WP	6.35	2.38	2.8	0.4	7°		•		•					•	
Left-hand Shown	DCMX 11T304 R/L-WP	9.525	3.97	4.4	0.4	7°		•		•					•	
	TCMX 090204WP	5.56	2.38	2.5	0.4	7°	•	•	•	•	•	•	•	•	•	•
	TCMX 110204WP	6.35	2.38	2.8	0.4	7°	•	•	•	•	•	•	•	•	•	•
	TPMX 090202WP 090204WP 090208WP	5.56	2.38	2.8	0.2 0.4 0.8	11°	••••	•	•	•	•••	•	•	•	•	•
	TPMX 110302WP 110304WP 110308WP	6.35	3.18	3.3	0.2 0.4 0.8	11°	••••	•	•	•	•••	•	•	•	•	•
Left-hand Shown	TPMX 110304 R/L-WP	6.35	3.18	3.3	0.4	11°		•		•					•	

Usage Classification 🗱 : Interruption / 1st Choice 😂 : Interruption / 2nd Choice 🗢 : Continuous - Light Interruption / 1st Choice 🗢 : Continuous / Light Interruption / 2nd Choice 🗢 : Continuous / Light Interruption / 2nd Choice

• : Standard Stock

Recommended Cutting Conditions

Workpiece Insert Grade		Min	Min Recommendation - Max.					
		Cutting Speed Vc (m/min)	ap (mm)	Feed f (mm/rev)				
	TN610	80 - 170 - 260	80 - 170 - 260					
	TN620	80 - 150 - 210						
	PV710	90 - 190 - 280						
	PV720	80 - 150 - 210						
Carbon Steel /	CA510	120 — 170 — 220	0.15 0.20 1.50	0.10 0.25 0.50				
Alloy Steel	CA515	100 - 160 - 210	0.15 – 0.30 – 1.50	0.10 - 0.25 - 0.50				
	CA525	90 - 140 - 190						
	CA530	80 - 120 - 160						
	PR1425	60 - 120 - 200						
	PR1225	50 - 80 - 150						

Recommended Insert Grade

Carbon Steel / Alloy Steel

Applications		Target	Base Material	Coating	Recommended Grade	
Co	Continuous	Surface Quality	Cormot	Non-coated	TN610 / TN620	
	Continuous	Wear Resistance	Cennet	MEGACOAT NANO	PV710 / PV720	
	Light	Wear Resistance (High Speed)	Carbida	CVD	CA510/CA515/CA525/CA530	
	Interrupted	Fracture Resistance (Small Parts)	Carbide	MEGACOAT NANO MEGACOAT	PR1425/PR1225	

Insert	Cutting Edge Angle
CCMT06/09	95°
DCMX07/11	93°
TCMX09/11	95°
TPMX09/11	95°

Applicable Toolholder

Insert	Application	Description	Applicable							
		A-SCLC-AE								
	Devine	S-SCLC-A	Vac							
	Боппд	E-SCLC-A	res							
		HA-SCLC09								
CC/0100/09		ACLC-FF								
	External	SCLC-FF	Voc							
	Turning	SCLC	Tes							
		S-SCLC								
	Roring								S-SDUC-A	Yes
							E-SDUC-A	*1		
		HA-SDUC11								
DCMV07/11		Boring	Boring	Boring	A-SDZC-AE					
DCWX07/11	bonng	S-SDZC-A	Yes *2							
		E-SDZC-A								
		A-SDQC-AE								
		S-SDQC-A	No							
		E-SDQC-A								

Insert	Application	Description	Applicable				
		ADJC-FF					
		SDJC-FF					
		SDJC	_				
		S-SDUC	Yes *1				
DCMX07/11	External Turning	SDLC-FF	See Caution *2				
		S-SDLC	See Caution *1				
		SDXC					
		SDNC-F					
		SDNC					
	Poring	A-STLC-AE	Voc				
TCMX09/11	bonng	S-STLC-A	Tes				
	External Turning	STGC	No				
		A-STLP-AE					
		S-STLP-A	Yes *1				
TPMX09/11	Poring	E-STLP-A					
	Builing	S-STWP-E					
		S-STWP					
		C-STXP					
	External Turning	STGP	No				

*1…Left-hand Insert for Right-hand Toolholder, Right-hand Insert for Left-hand Toolholder *2…Right-hand Insert for Right-hand Toolholder, Left-hand Insert for Left-hand Toolholder

Caution: The SDLC-FF and S-SDLC toolholders have a 5° lead angle While the DCMX...WP can offer surface finish improvements over non-wiper inserts in those toolholders, optimum performance will be obtained by using a 3° lead angle, such as ADJC-FF, SDJC, S-SDUC, etc

Setting Conditions for Wiper Inserts

Theoretical Surface Roughness

The theoretical surface roughness of a wiper insert is lower than inserts without a wiper

When selecting a feed rate, see left chart for theoretical surface roughness

Non-Handed Insert Design

For D type and T type, cutting edge offsets are required

For D type and T type, program corrections are required for ramping and profiling

Ramping Angle θ	0°	5°	10°	15°	20°	25°
Z-direction Correction Amount (mm) D Type	0	-0.14	-0.15	-0.16	-0.16	-0.17
Z-direction Correction Amount (mm) T Type	0	-0.16	-0.17	-0.17	-0.17	_

Profiling Angle θ	0°	5°	10°	15°	20°	25°	30°	35°	40°	45°	50°
Z-direction Correction Amount (mm) D Type	0.00	0.07	0.06	0.04	0.03	0.02	0.01	0.00	-	-	-
Z-direction Correction Amount (mm) T Type	0.00	0.07	0.06	0.05	0.05	0.04	0.03	0.02	0.01	0.01	0.00
Profiling Angle θ	40°	45°	50°	55°	60°	65°	70°	75°	80°	85°	90°
Z-direction Correction Amount (mm) D Type	-0.01	-0.02	-0.03	-0.04	-0.05	-0.05	-0.04	-0.03	-0.02	-0.01	0.00
Z-direction Correction Amount (mm) T Type	-	-	-	-0.01	-0.02	-0.03	-0.04	-0.03	-0.02	-0.01	0.00

Handed Insert Design

For D type and T type, cutting edge offsets are required

Programming Correction is Necessary for Plunging with D and T Type Inserts (Not Necessary for Up-Facing)

Negative Wiper Insert

WE/WF Chipbreaker

High Productivity with Newly Designed Wiper Edge Geometry

WE Chipbreaker (For High Machining Efficiency)

High productivity by reducing cutting time during higher feed machining

Stable chip control in a wide range of applications

Finishing

WF Chipbreaker (For Excellent Surface Roughness)

High productivity with smooth chip control in finishing operations

Excellent surface roughness by controlling adhesion

